Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomare Pinzette für Halbleiter

01.09.2009
Forscher des Paul-Drude-Instituts für Festkörperelektronik (PDI) haben erstmals einzelne Atome auf einer Halbleiteroberflächegezielt angeordnet. Sie wollen damit deren elektronische Eigenschaften erforschen.

Wie mit einer Pinzette können die Forscher des Paul-Drude-Instituts mit der Spitze ihres Rastertunnelmikroskops Atome anheben und verschieben. Das passiert bei vier Grad Kelvin, also nahe dem absoluten Nullpunkt und unter extrem schwingungsgedämpften Bedingungen.


Mit Hilfe des Rastertunnelmikroskops können die PDI-Forscher Indiumatome auf einer Indiumarsenidoberfläche linear anordnen. Foto: PDI

Das ganze verfolgen sie dann auf dem Bildschirm eines PCs, der das Mikroskop steuert. Die Forscher berichten darüber in der aktuellen Ausgabe von Physical Review Letters (103, 096104, 2009). "Bei unserem Experiment können wir das Verhalten von einzelnen Atomen an einer Oberfläche direkt sehen", sagt Dr. Stefan Fölsch. Was bisher nur mit Metallen funktionierte, gelang nun erstmals auch mit Indiumarsenid, einem typischen Halbleitermaterial. Stefan Fölsch erläutert den Unterschied: "Bei Metallen ziehen wir das Atom quasi über die Oberfläche. Bei Halbleitern würde das nicht funktionieren, weil die Atome dort eine stärkere chemische Bindung an die Oberfläche haben."

Ein Rastertunnelmikroskop nutzt den sogenannten "Tunneleffekt" zum Abtasten von Oberflächen elektrisch leitender Materialien und bildet deren Ladungsverteilung atomar genau ab. Damit lassen sich aber auch Atome manipulieren. Zum Abtasten fährt eine atomar feine Nadel in einem Abstand von nur wenigen zehntel Nanometern über die Oberfläche, ohne sie jedoch zu berühren. "Bei solch geringen Abständen gelten die Gesetze der Quantenmechanik. Danach besteht eine endliche Wahrscheinlichkeit, dass Elektronen die Energiebarriere zwischen Oberfläche und Spitze überwinden können", erläutert Fölsch. Beim Anlegen einer Spannung fließt dann ein sogenannter Tunnelstrom. Dessen Stärke hängt extrem empfindlich vom Abstand zwischen Oberfläche und Spitze ab.

Um ein Indiumatom zu verschieben, gehen die PD-IForscher nun folgendermaßen vor: Sie positionieren die Spitze über dem Atom und können Spannung und Tunnelstrom so einstellen, dass das Atom von der Oberfläche zur Spitze springt. Dies geschieht dadurch, dass der fließende Strom das zunächst ruhende Atom anregt und seinen elektrischen Ladungszustand zum Transfer ausnutzt. Dann wird die Spitze zurückgefahren und an eine gewünschte Position bewegt. Dort, wo das Atom abgelegt werden soll, wird die Spitze samt Atom herunter gefahren, bis ein mechanischer Punktkontakt entsteht - das Atom klebt wieder auf der Oberfläche.

Auf diese Weise haben die Wissenschaftler Ketten von Indiumatomen sowie Drei- und Sechsecke erzeugt. Was wie eine atomare Spielerei erscheint, eröffnet neue Möglichkeiten für die Grundlagenforschung. Denn die Forscher interessiert vor allem, wie die Elektronenverteilung der atomaren Gebilde ist. Bei einem Indium-Nanodraht bestehend aus bis zu sechs Atomen konnten sie diese bereits messen. "Die Wechselwirkung von Halbleitern mit sogenannten Dotieratomen, welche Ladung mit dem Kristallgitter austauschen, ist von großer Bedeutung für die Eigenschaften von Halbleitermaterialien", begründet Stefan Fölsch das Interesse der Forscher an den elektronischen Zuständen von einzelnen Atomen. Ein weiteres spannendes Gebiet ist die Kombination von Halbleitern mit magnetischen Atomen. Solche Materialien könnten neben der Ladung auch das magnetische Moment der Elektronen, den Spin, zur Informationsverarbeitung nutzen. Die nun veröffentlichten Experimente eröffnen die Möglichkeit, weitere detaillierte Erkenntnisse über die Physik allerkleinster Halbleiter-Strukturen zu bekommen.

Kontakt:
Dr. Stefan Fölsch, Paul-Drude-Institut
Tel.: 030 20377-459
E-Mail: foelsch@pdi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Berichte zu: Abtasten Atom Atomare Elektron Halbleiter Indiumatom Ladung Metall Pinzette Rastertunnelmikroskop Tunnelstrom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Entzündung weckt Schläfer

29.03.2017 | Biowissenschaften Chemie

Mittelstand 4.0-Kompetenz­zentrum Stuttgart gestartet

29.03.2017 | Wirtschaft Finanzen

Energieträger: Biogene Reststoffe effizienter nutzen

29.03.2017 | Ökologie Umwelt- Naturschutz