Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomare Pinzette für Halbleiter

01.09.2009
Forscher des Paul-Drude-Instituts für Festkörperelektronik (PDI) haben erstmals einzelne Atome auf einer Halbleiteroberflächegezielt angeordnet. Sie wollen damit deren elektronische Eigenschaften erforschen.

Wie mit einer Pinzette können die Forscher des Paul-Drude-Instituts mit der Spitze ihres Rastertunnelmikroskops Atome anheben und verschieben. Das passiert bei vier Grad Kelvin, also nahe dem absoluten Nullpunkt und unter extrem schwingungsgedämpften Bedingungen.


Mit Hilfe des Rastertunnelmikroskops können die PDI-Forscher Indiumatome auf einer Indiumarsenidoberfläche linear anordnen. Foto: PDI

Das ganze verfolgen sie dann auf dem Bildschirm eines PCs, der das Mikroskop steuert. Die Forscher berichten darüber in der aktuellen Ausgabe von Physical Review Letters (103, 096104, 2009). "Bei unserem Experiment können wir das Verhalten von einzelnen Atomen an einer Oberfläche direkt sehen", sagt Dr. Stefan Fölsch. Was bisher nur mit Metallen funktionierte, gelang nun erstmals auch mit Indiumarsenid, einem typischen Halbleitermaterial. Stefan Fölsch erläutert den Unterschied: "Bei Metallen ziehen wir das Atom quasi über die Oberfläche. Bei Halbleitern würde das nicht funktionieren, weil die Atome dort eine stärkere chemische Bindung an die Oberfläche haben."

Ein Rastertunnelmikroskop nutzt den sogenannten "Tunneleffekt" zum Abtasten von Oberflächen elektrisch leitender Materialien und bildet deren Ladungsverteilung atomar genau ab. Damit lassen sich aber auch Atome manipulieren. Zum Abtasten fährt eine atomar feine Nadel in einem Abstand von nur wenigen zehntel Nanometern über die Oberfläche, ohne sie jedoch zu berühren. "Bei solch geringen Abständen gelten die Gesetze der Quantenmechanik. Danach besteht eine endliche Wahrscheinlichkeit, dass Elektronen die Energiebarriere zwischen Oberfläche und Spitze überwinden können", erläutert Fölsch. Beim Anlegen einer Spannung fließt dann ein sogenannter Tunnelstrom. Dessen Stärke hängt extrem empfindlich vom Abstand zwischen Oberfläche und Spitze ab.

Um ein Indiumatom zu verschieben, gehen die PD-IForscher nun folgendermaßen vor: Sie positionieren die Spitze über dem Atom und können Spannung und Tunnelstrom so einstellen, dass das Atom von der Oberfläche zur Spitze springt. Dies geschieht dadurch, dass der fließende Strom das zunächst ruhende Atom anregt und seinen elektrischen Ladungszustand zum Transfer ausnutzt. Dann wird die Spitze zurückgefahren und an eine gewünschte Position bewegt. Dort, wo das Atom abgelegt werden soll, wird die Spitze samt Atom herunter gefahren, bis ein mechanischer Punktkontakt entsteht - das Atom klebt wieder auf der Oberfläche.

Auf diese Weise haben die Wissenschaftler Ketten von Indiumatomen sowie Drei- und Sechsecke erzeugt. Was wie eine atomare Spielerei erscheint, eröffnet neue Möglichkeiten für die Grundlagenforschung. Denn die Forscher interessiert vor allem, wie die Elektronenverteilung der atomaren Gebilde ist. Bei einem Indium-Nanodraht bestehend aus bis zu sechs Atomen konnten sie diese bereits messen. "Die Wechselwirkung von Halbleitern mit sogenannten Dotieratomen, welche Ladung mit dem Kristallgitter austauschen, ist von großer Bedeutung für die Eigenschaften von Halbleitermaterialien", begründet Stefan Fölsch das Interesse der Forscher an den elektronischen Zuständen von einzelnen Atomen. Ein weiteres spannendes Gebiet ist die Kombination von Halbleitern mit magnetischen Atomen. Solche Materialien könnten neben der Ladung auch das magnetische Moment der Elektronen, den Spin, zur Informationsverarbeitung nutzen. Die nun veröffentlichten Experimente eröffnen die Möglichkeit, weitere detaillierte Erkenntnisse über die Physik allerkleinster Halbleiter-Strukturen zu bekommen.

Kontakt:
Dr. Stefan Fölsch, Paul-Drude-Institut
Tel.: 030 20377-459
E-Mail: foelsch@pdi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Berichte zu: Abtasten Atom Atomare Elektron Halbleiter Indiumatom Ladung Metall Pinzette Rastertunnelmikroskop Tunnelstrom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten