Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomare Pinzette für Halbleiter

01.09.2009
Forscher des Paul-Drude-Instituts für Festkörperelektronik (PDI) haben erstmals einzelne Atome auf einer Halbleiteroberflächegezielt angeordnet. Sie wollen damit deren elektronische Eigenschaften erforschen.

Wie mit einer Pinzette können die Forscher des Paul-Drude-Instituts mit der Spitze ihres Rastertunnelmikroskops Atome anheben und verschieben. Das passiert bei vier Grad Kelvin, also nahe dem absoluten Nullpunkt und unter extrem schwingungsgedämpften Bedingungen.


Mit Hilfe des Rastertunnelmikroskops können die PDI-Forscher Indiumatome auf einer Indiumarsenidoberfläche linear anordnen. Foto: PDI

Das ganze verfolgen sie dann auf dem Bildschirm eines PCs, der das Mikroskop steuert. Die Forscher berichten darüber in der aktuellen Ausgabe von Physical Review Letters (103, 096104, 2009). "Bei unserem Experiment können wir das Verhalten von einzelnen Atomen an einer Oberfläche direkt sehen", sagt Dr. Stefan Fölsch. Was bisher nur mit Metallen funktionierte, gelang nun erstmals auch mit Indiumarsenid, einem typischen Halbleitermaterial. Stefan Fölsch erläutert den Unterschied: "Bei Metallen ziehen wir das Atom quasi über die Oberfläche. Bei Halbleitern würde das nicht funktionieren, weil die Atome dort eine stärkere chemische Bindung an die Oberfläche haben."

Ein Rastertunnelmikroskop nutzt den sogenannten "Tunneleffekt" zum Abtasten von Oberflächen elektrisch leitender Materialien und bildet deren Ladungsverteilung atomar genau ab. Damit lassen sich aber auch Atome manipulieren. Zum Abtasten fährt eine atomar feine Nadel in einem Abstand von nur wenigen zehntel Nanometern über die Oberfläche, ohne sie jedoch zu berühren. "Bei solch geringen Abständen gelten die Gesetze der Quantenmechanik. Danach besteht eine endliche Wahrscheinlichkeit, dass Elektronen die Energiebarriere zwischen Oberfläche und Spitze überwinden können", erläutert Fölsch. Beim Anlegen einer Spannung fließt dann ein sogenannter Tunnelstrom. Dessen Stärke hängt extrem empfindlich vom Abstand zwischen Oberfläche und Spitze ab.

Um ein Indiumatom zu verschieben, gehen die PD-IForscher nun folgendermaßen vor: Sie positionieren die Spitze über dem Atom und können Spannung und Tunnelstrom so einstellen, dass das Atom von der Oberfläche zur Spitze springt. Dies geschieht dadurch, dass der fließende Strom das zunächst ruhende Atom anregt und seinen elektrischen Ladungszustand zum Transfer ausnutzt. Dann wird die Spitze zurückgefahren und an eine gewünschte Position bewegt. Dort, wo das Atom abgelegt werden soll, wird die Spitze samt Atom herunter gefahren, bis ein mechanischer Punktkontakt entsteht - das Atom klebt wieder auf der Oberfläche.

Auf diese Weise haben die Wissenschaftler Ketten von Indiumatomen sowie Drei- und Sechsecke erzeugt. Was wie eine atomare Spielerei erscheint, eröffnet neue Möglichkeiten für die Grundlagenforschung. Denn die Forscher interessiert vor allem, wie die Elektronenverteilung der atomaren Gebilde ist. Bei einem Indium-Nanodraht bestehend aus bis zu sechs Atomen konnten sie diese bereits messen. "Die Wechselwirkung von Halbleitern mit sogenannten Dotieratomen, welche Ladung mit dem Kristallgitter austauschen, ist von großer Bedeutung für die Eigenschaften von Halbleitermaterialien", begründet Stefan Fölsch das Interesse der Forscher an den elektronischen Zuständen von einzelnen Atomen. Ein weiteres spannendes Gebiet ist die Kombination von Halbleitern mit magnetischen Atomen. Solche Materialien könnten neben der Ladung auch das magnetische Moment der Elektronen, den Spin, zur Informationsverarbeitung nutzen. Die nun veröffentlichten Experimente eröffnen die Möglichkeit, weitere detaillierte Erkenntnisse über die Physik allerkleinster Halbleiter-Strukturen zu bekommen.

Kontakt:
Dr. Stefan Fölsch, Paul-Drude-Institut
Tel.: 030 20377-459
E-Mail: foelsch@pdi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.pdi-berlin.de

Weitere Berichte zu: Abtasten Atom Atomare Elektron Halbleiter Indiumatom Ladung Metall Pinzette Rastertunnelmikroskop Tunnelstrom

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics