Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astrophysik: Tiefer Blick in die Sonne

22.02.2011
Im farbenprächtigen Spektakel der Polarlichter zeigen sie sich von ihrer schönen Seite. Dass sie auch anders können, merkt man, wenn sie Satelliten und ICEs stilllegen: Elektrisch geladene Teilchen, Radiowellen und Röntgenstrahlen, die von der Sonne in den Weltraum geschickt werden und auf die Erde gelangen. Würzburger Astrophysiker nehmen sie in einem neuen Forschungsprojekt genauer unter die Lupe.

Wie eine lose Masche in einem Wollpulli stehen sie bogenförmig auf der Sonnenoberfläche: Protuberanzen. Die Bögen aus sehr dichtem Material können bis zu 50.000 Kilometer hoch werden – und sich manchmal komplett von der Sonne lösen. Dann schießen bis zu zehn Milliarden Tonnen Material mit einer Geschwindigkeit von rund 1.000 Kilometer pro Sekunde in den Weltraum. Treffen Teile von ihnen Minuten oder Stunden später auf die Erde, bleibt das nicht immer ohne Folgen.

„Solche koronalen Massenausbrüche bestehen aus hochenergetischen Teilchen, aus Röntgen- und aus Radiostrahlen“, erklärt Dr. Felix Spanier. Spanier ist Assistent am Lehrstuhl für Astronomie der Universität Würzburg; gemeinsam mit dem Doktoranden Urs Ganse untersucht er die Ausbrüche in einem Forschungsprojekt, das die EU mit rund 150.000 Euro finanziert.

Sonneneruptionen und ihre Folgen

Polarlichter sind die eine, die schöne Seite des Weltraum-Bombardements. Defekte Satelliten, zerstörte Elektrik, Feuer die weniger schöne. So soll eine besonders heftige Eruption 1859 für zahllose Brände in Schweden und den USA verantwortlich gewesen sein. Die elektromagnetischen Effekte in der Atmosphäre hatten in Telegraphenleitungen so starke Ströme in Bewegung gesetzt, dass die Drähte überhitzten.

In heutiger Zeit müssen eher Satellitenbetreiber das so genannte „Weltraumwetter“ fürchten. Mit ihren hohen Energien können die Teilchen und Strahlen Satelliten schachmatt setzen mit gravierenden Folgen beispielsweise für die Telekommunikation oder das Navigationssystem GPS. So störte im Januar 1994 eine Sonneneruption den kanadischen Telekom-Satelliten Anik-E2 fünf Monate lang, was den Betreiber rund 50 Millionen Dollar gekostet haben soll. Und selbst die Elektrik der ersten Generation von ICEs reagierte so empfindlich auf den Strahlenschauer, dass Züge bisweilen liegenblieben.

Was die Würzburger Forscher untersuchen

Warum interessieren sich Astrophysiker für die Sonneneruptionen? Und was gibt es daran über mehrere Jahre hinweg – die EU finanziert das Würzburger Projekt drei Jahre lang – zu erforschen? Tatsache ist: „Die Physik versucht seit mehr als 50 Jahren zu ergründen, welche Prozesse hinter den Massenausbrüchen steckten. Bis heute ohne Erfolg“, sagt Urs Ganse. Das mag überraschen. Immerhin ist die Sonne mit rund 150 Millionen Kilometern aus astronomischer Sicht nicht allzu weit von der Erde entfernt. Und gut zu sehen ist sie auch. Wo also liegen die Probleme?

„Das Problem ist, dass diese Prozesse in einem Plasma ablaufen, das etwa 500.000 Grad heiß ist. Da kann ich nichts beobachten; da kann ich auch keine Sonde reinschicken, und das kann ich auf der Erde nicht nachbauen“, sagt Felix Spanier. Also versuchen Spanier und Ganse das solare Geschehen mit aufwändigen Simulationen im Rechner nachzustellen. Momentan ist Ganse so weit, dass er in seinen mathematischen Modellen zehn Milliarden Teilchen in einem Würfel mit einer Kantenlänge von 50 Metern miteinander in Wechselwirkung treten lassen kann. Die Rechner, die solche Aufgaben bewältigen, stehen in Jülich oder in Finnland und zählen mit 60.000 Prozessoren zu den schnellsten der Welt.

Eine Schwierigkeitsstufe höher erforscht Felix Spanier das Geschehen in der Sonne: „So wie ein Stein in einem Bach für Wirbel sorgt, treten im Plasma Turbulenzen auf, die das übrige Geschehen beeinflussen“, erklärt der Astrophysiker. Diese Abläufe will Spanier aufklären und mit Hilfe von Formeln „so einfach wie möglich beschreiben“.

Probleme und Ziele des Forschungsprojekts

Für ihre Untersuchungen können die beiden Wissenschaftler auf jede Menge Daten zurückgreifen. Zwölf Satelliten beobachten derzeit die Sonne vom Weltraum aus und schicken ihre Messergebnisse in einem beständigen Datenstrom auf die Erde. Teleskope auf der Erde ergänzen deren Arbeit. Trotzdem ist es nicht so einfach, damit Rückschlüsse auf das Geschehen auf der Sonne zu ziehen. „Der Teilchenstrom eines koronalen Massenausbruchs wird beispielsweise im Magnetfeld der Sonne gestreut; die Teilchen ändern dadurch ihre Richtung und ihre Geschwindigkeit. Sie zurückzuverfolgen ist deshalb nicht ganz einfach“, sagt Felix Spanier. Das sei vergleichbar mit einem Tennisball, der gegen eine unebene Wand geworfen wird. Da wisse man auch nie, in welche Richtung er abprallen wird.

Die Vorgänge in der Sonne zu verstehen: Das ist das große Ziel der beiden Wissenschaftler. Auch für die Industrie könnte das Wissen um „fundamentale Plasmaprozesse“ interessant sein. Ob es damit in naher Zukunft auch möglich sein wird, Vorhersagen über Ausbrüche und deren Folgen für die Erde zu machen, ist angesichts der hohen Komplexität fraglich. Trotzdem erwarten Spanier und Ganse Verbesserungen gegenüber dem jetzigen Zustand. „Momentan können wir einen koronalen Massenauswurf beobachten und davon ausgehen, dass die Teilchen etwa 30 Minuten später die Erde erreichen“, sagt Ganse. Das sei gerade genug Zeit, um Satellitenbetreiber zu warnen und Satelliten in den Sicherheitsmodus zu fahren.

Daten auf einem Server sammeln

Neben diesem wissenschaftlichen Ansatz verfolgt die Arbeit der beiden Würzburger Astrophysiker, die Teil eines größeren Projekts mit zwölf europäischen Partnern ist, noch ein zweites, praktisches Ziel. „Wir wollen alle Informationen und Daten, die es über das Geschehen auf der Sonne gibt, auf einem zentralen Server sammeln“, sagt Urs Ganse. Bisher seien diese über die ganze Welt zerstreut und für Wissenschaftler nicht immer leicht zu bekommen. Mit der Konsequenz, dass „bestimmte Events sehr gut untersucht sind, einfach weil die Daten gut zugänglich sind, andere Ereignisse hingegen so gut wie gar nicht“, sagt Ganse.

Kontakt

Dr. Felix Spanier, Lehrstuhl für Astronomie, T: (0931) 31-84932, E-Mail: fspanier@astro.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie