Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

AstronomInnen entdecken Radio "Jupiter"

27.08.2012
"PIRATENSENDER" AUF JUPITER - RADIOSTRAHLUNG BIRGT ÜBERRASCHUNG

Die Entdeckung einer neuen Radiostrahlung des Jupiters zählt zu den Highlights eines dreijährigen Projekts des Wissenschaftsfonds FWF. In diesem wurde eigentlich die planetare Radiostrahlung der Erde und des Saturns untersucht - und eine eigenartige Radiostrahlung des Jupiters entdeckt.

Weitere Ergebnisse des jetzt beendeten Projekts umfassten die Identifikation einer neuen Modulation der Radiostrahlung der Erde sowie die Analyse spezieller Komponenten der Radiostrahlung des Saturns. In einer abschließenden Evaluation wurde das Projekt von externen GutachterInnen hervorragend bewertet.

Die Erde ist laut. Radiolaut. So werden in der Astronomie Objekte bezeichnet, die eine messbare Radiostrahlung verursachen. Dazu gehört eben auch die Erde, deren Magnetfeld geladene Teilchen (Elektronen, Protonen, Ionen) beeinflusst und so Radiostrahlung verursacht. Doch auch andere Planeten wie der Saturn oder der Jupiter verursachen eine solche Strahlung. Ihre Messung erlaubt Rückschlüsse auf planetare Magnetfelder. Genau diese waren das Ziel eines Projekts des Wissenschaftsfonds FWF, das am Institut für Weltraumforschung der Österreichischen Akademie der Wissenschaften (IWF) in Graz durchgeführt wurde.

TUNED IN

Gemeinsam mit KollegInnen aus den USA und Frankreich wollte das Team um Prof. Helmut O. Rucker, Stellvertretender und Wissenschaftlicher Direktor des IWF, spezielle Radiostrahlung der Erde und des Saturns analysieren. Mithilfe von Radiodaten der NASA-Raumsonden "Stereo-A" und "Stereo-B" gelang ihnen das auch - doch zuvor funkte ihnen ein "Störsender" in die Arbeit. Dazu Prof. Rucker: "Im Zuge der Auswertung entdeckte mein Kollege Dr. Mykhaylo Panchenko eine eigenartige Radiostrahlung, die vom Jupiter ausging - also eigentlich gar nicht Teil unseres Projekts gewesen wäre. Dass diese Strahlung aber trotz fünfzigjähriger Beobachtung der Jupiterradiostrahlung unentdeckt geblieben war, war für uns Anlass, ihr auf den Grund zu gehen."

Auffällig an der Strahlung im Dekameterbereich (Wellenlänge von ca. 10 Metern) war vor allem ihre Periodizität, also der Wechsel ihrer Intensität. Bisher waren für die Dekameterstrahlung des Jupiters zwei Perioden bekannt: eine, die sich durch die Rotation des Jupiters ergibt und 9 Stunden, 55 Minuten und 29,7 Sekunden umfasst (System III), sowie eine weitere, die auf den Einfluss des Jupiter-Monds Io auf das Magnetfeld zurückzuführen ist (42,46 Stunden). Mit einer Periodizität von etwa 10,07 Stunden lag die neu entdeckte Komponente der Radiostrahlung aber ca. 1,5 Prozent über der, die sich durch die Rotation des Jupiters ergibt. Dazu Dr. Panchenko: "Unsere weiteren Analysen legten die Vermutung nahe, dass die Quelle dieser neuen Radiokomponente gemeinsam mit Jupiter rotiert. Wir vermuten, dass der Strahlungsursprung in der Nähe des sogenannten Plasmatorus des Jupitermondes Io liegt." Dieser ist ein ringförmiger Bereich um den Jupiter, der auf Höhe der Bahnebene des Mondes Io liegt und durch vulkanisches Material des Mondes gebildet wird, das mit dem Magnetfeld des Jupiters in Wechselwirkung steht. Diese These zur Quelle und Fragen zur Erzeugung der Radio-Impulse müssen nun in zukünftigen Projekten geklärt werden.

PROJEKTE & PRODUKTE

Für das FWF-Projekt stellte die in Geophysical Research Letters veröffentlichte Arbeit zur Entdeckung der Radiostrahlung ein unerwartetes "Nebenprodukt" dar. Doch auch zu den eigentlich geplanten Arbeiten über die Radiostrahlung der Erde und des Saturns gelangen wichtige Fortschritte. So konnte durch die Analyse der Stereo-A- und -B-Daten eine deutliche tägliche Modulation für die Aurorale Kilometerwellenlängen-Radiostrahlung der Erde festgestellt werden. Weiters gelang eine "Inflight"-Kalibration des Stereo-Antennensystems auf Grundlage spezieller mathematischer Ansätze. Damit wurde eine exakte Charakterisierung des Empfangsverhaltens dieses Systems ermöglicht. Zusätzlich wurden für die Saturn-Kilometerwellenlängen-Radiostrahlung genaue Analysen zu deren Modulation durchgeführt.

Zur Erweiterung des Projekts meint Prof. Rucker: "Grundlagenforschung lebt vom Unerwarteten. Dank der Flexibilität des FWF war es uns möglich, einer wissenschaftlichen Überraschung mit solider Datenanalyse zu begegnen." Eine Tatsache, die auch die internationalen EvaluatorInnen des Projekts mit ausgezeichneten Bewertungen im Abschlussbericht würdigten.

Originalpublikation: New periodicity in Jovian decametric radio emission, M. Panchenko, H. O. Rucker, M. L. Kaiser, O. C. St. Cyr, J. L. Bougeret, K. Goetz und S. D. Bale. Geophysical Research Letters, VOL. 37, L05106, doi:10.1029/2010GL042488, 2010

Bild und Text ab Montag, 27. August 2012, ab 09.00 Uhr MEZ verfügbar unter:
http://www.fwf.ac.at/de/public_relations/press/pv201208-de.html
Wissenschaftlicher Kontakt:
Prof. Helmut O. Rucker
Institut für Weltraumforschung der Österreichischen Akademie der Wissenschaften Schmiedlstraße 6
8042 Graz
T +43 / (0)316 / 4120 - 601
E helmut.rucker@oeaw.ac.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Weitere Informationen:
http://www.fwf.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics