Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astronomen finden Rezept für die Sternentstehung

11.04.2014

Astronomen haben eine Möglichkeit gefunden, anhand von Beobachtungen vorherzusagen, wieviele neue Sterne sich in einer Molekülwolke bilden werden. Sie nutzen dabei eine neue Methode, die räumliche Struktur solcher Wolken zu rekonstruieren. 

Das damit gefundene »Sternentstehungs-Rezept« erlaubt es, Theorien der Sternentstehung direkt mit Beobachtungen zu vergleichen. Außerdem werden Teleskope wie z.B. der Teleskopverbund ALMA damit die Sternentstehungs-Aktivität ferner Gaswolken abschätzen und so eine Sterngeburten-Karte unserer Heimatgalaxie erstellen können. Die Ergebnisse werden am 11. April 2014 in der Fachzeitschrift Science veröffentlicht.


Zwei der von Kainulainen und Kollegen untersuchten Molekülwolken: Der Pfeifennebel (links) und die Rho-Ophiuchi-Dunkelwolke (rechts) vor dem Hintergrund der Milchstraße.

Bild: Hintergrund: ESO/S. Guisard (www.eso.org/~sguisard) Dichtekarten: J. Kainulainen, MPIA

Sternentstehung ist einer der grundlegenden Prozesse im Kosmos. Wie sich Sterne bilden, und unter welchen Bedingungen, bestimmt Erscheinungsbild und Eigenschaften ganzer Galaxien. Sterne werden in riesigen Wolken aus interstellarem Gas und Staub geboren. Kollabiert eine Gasregion im Inneren dieser Wolken unter ihrer eigenen Schwerkraft, dann zieht sich das Gas darin soweit zusammen, bis Druck und Temperatur hoch genug sind, dass Kernfusion einsetzen kann: ein neuer Stern ist entstanden.

Wie schnell in einer Wolke neue Sterne entstehen und wieviel Gas dabei verbraucht wird (die »Sternentstehungsrate«), ist nicht einfach nachzuweisen. Zwar kann man für nahegelegene Wolken in nicht mehr als 1500 Lichtjahren Entfernung vergleichsweise einfach nachzählen, wieviele junge Sterne sich in der Wolke befinden. Aber für weiter entfernte Wolken, in denen sich keine individuellen Sterne beobachten lassen, versagt die direkte Zählung. Die Sternentstehungsraten für solche Wolken sind weitgehend unbekannt.

Jetzt haben die drei Astronomen Jouni Kainulainen und Thomas Henning vom Max-Planck-Institut für Astronomie und Christoph Federrath von der Monash-Universität in Australien eine alternative Möglichkeit gefunden, abzuschätzen, wieviele neue Sterne sich in einer Wolke bilden: eine Art »Sternentstehungs-Rezept«, das die Verbindung zwischen direkten astronomischen Beobachtungen der Struktur riesiger Gaswolken und ihren Sternentstehungsraten herstellt.

Dazu entwickelten die Astronomen eine Methode, mit der sich die räumliche Struktur individueller Gaswolken vereinfacht modellieren lässt. Die Daten, an denen sich das Modell orientiert, stammen aus Durchleuchtungs-Beobachtungen: Das Licht ferner Sterne, das durch die Wolke hindurchscheint, ehe es die Erde erreicht, wird durch den Staub in der Wolke etwas abgeschwächt. Die Rekonstruktion der Wolkenstruktur nutzt Abschwächungs-Messungen für Zehntausende von Sternen; ist die räumliche Struktur bekannt, dann lassen sich damit auch die Dichten der verschiedenen Regionen im Inneren der Wolke bestimmen.

Für näher gelegene Wolken verglichen Kainulainen und seine Kollegen ihre Rekonstruktion mit direkten Beobachtungen junger Sterne, die sich in den betreffenden Wolken erst vor kurzem gebildet hatten. Auffällig war dabei, dass sich erst bei Regionen ab einer bestimmten Dichte überhaupt neue Sterne bildeten. Den kritischen Dichtewert konnten die Astronomen zu rund 5000 Wasserstoffmolekülen pro Kubikzentimeter abschätzen. Offenbar kann das Gas in einer Region nur dann kollabieren, um einen Stern zu bilden, wenn die Dichte in dieser Region über dem kritischen Wert liegt.

Kainulainen erklärt: »Wir konnten erstmals aus Beobachtungen der Wolkenstruktur einen kritischen Dichtewert für die Sternentstehung bestimmen. In Theorien der Sternentstehung spielt solch eine kritische Dichte bereits seit langem eine wichtige Rolle. Aber erst mit unserer Methode, die räumliche Struktur von Molekülwolken zu rekonstruieren, können Astronomen die Dichtestruktur solcher Wolken ableiten – und dann Beobachtung und Theorie direkt vergleichen.«

Die numerischen Simulationen, mit deren Hilfe die neue Methode getestet wurde, wurden von Christoph Federrath durchgeführt. Er fügt hinzu: »Mit diesen Ergebnissen und mithilfe der Werkzeuge, die wir zur Überprüfung der Sternentstehungs-Theorien entwickelt haben, können wir uns jetzt einer der großen offenen Fragen der Astrophysik zuwenden: Angenommen, wir haben es mit einer Wolke mit einer bestimmten Gesamtmasse zu tun. Wieviele Sterne werden in dieser Wolke entstehen, und welche Massen werden diese Sterne haben?«

Thomas Henning, Direktor am Max-Planck-Institut für Astronomie und Koautor der Studie, fügt hinzu: »Es gibt viele Beobachtungen solcher Molekülwolken – und dank dem neuen Teleskopverbund ALMA wird es in Zukunft viele noch deutlich detailreichere solche Beobachtungsdaten geben. Mit unserer Methode können wir sagen: Zeigt uns eure Daten, dann können wir euch sagen, wieviele Sterne in eurer Wolke entstehen.«

ALMA ist ein Teleskopverbund aus 66 hochpräzisen Mikrowellen-Antennen mit gegenseitigen Abständen von bis zu 16 Kilometern, die zusammengeschaltet wie ein einziges, extrem detailscharfes Teleskop agieren können. ALMA befindet sich auf der chilenischen Atacama-Hochebene, hat über die letzten Jahre hinweg den Beobachtungsbetrieb aufgenommen und kann Gas- und Staubwolken mit nie dagewesener Empfindlichkeit und Detailschärfe nachweisen.

Kainulainen sagt: »Wir haben den Astronomen ein neues, wirkungsvolles Werkzeug in die Hand gegeben. Sternentstehung ist einer der grundlegendsten Vorgänge in der Astronomie. Und unsere Ergebnisse erlauben es den Astronomen, Sternentstehungsraten für viele Gaswolken zu bestimmen, bei denen dies bislang nicht möglich war – sowohl in unserer Milchstraße als auch in anderen Galaxien.«

Kontakt

Jouni Kainulainen (Erstautor)
Max-Planck-Institute für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 427
E-Mail: jtkainul@mpia.de

Thomas Henning (Koaor)
Max-Planck-Institute für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 200
E-Mail: henning@mpia.de

Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 261
E-Mail: pr@mpia.de

Hintergrundinformationen

Die neuen Ergebnisse werden veröffentlicht als Jouni Kainulainen, Christoph Federrath und Thomas Henning: "Unfolding the Laws of Star Formation: The Density Distribution of Molecular Clouds" in der Ausgabe vom 11. April 2014 der Fachzeitschrift Science.

Jouni Kainulainen wurde unterstützt durch das Schwerpunktprogramm 1573 "Interstellar Medium" der Deutschen Forschungsgemeinschaft (»ISM-SPP«), Christoph Federrath durch eine Discovery Projects Fellowship des Australian Research Council (grant DP110102191).

Fragen und Antworten

Was ist an diesem Ergebnis neu/wichtig?
Bisher klaffte zwischen Beobachtungen von Molekülwolken und den Theorien zur Sternentstehung in solchen Wolken eine deutliche Lücke: In Sternentstehungsmodellen spielen Dichtewerte die Schlüsselrolle. Beobachtende Astronomen dagegen erstellen aufgrund von Lichtaussendung (Strahlung von den Molekülen oder den Staubteilchen in den Wolken) oder Lichtabsorption (welcher Anteil des Lichts ferner Sterne wird durch die Wolke wie stark abgeschwächt?) zweidimensionale Karten eines Ausschnitts der Himmelskugel. Die neu entwickelte Methode von Kainulainen und Kollegen stellt eine direkte Verbindung zwischen Beobachtungen und Modellen her, die weit genauere Vergleiche von Beobachtungen und Theorie erlaubt als bisherige Abschätzungen. Die Schlüsselrolle kommt dabei einer Methode zur Rekonstruktion der Dichtestruktur von Wolken aus den Beobachtungsdaten zu. Am Beispiel von nähergelegenen Molekülwolken (Abstände bis rund 1000 Lichtjahre) glichen Kainulainen und seine Kollegen die Ergebnisse ihrer Methode mit direkt beobachtbaren Sternenstehungsraten ab. Dabei fanden sie, dass es – wie von den Theoretikern schon länger vorhergesagt – einen kritischen Dichtewert gibt, unterhalb dessen Gas nicht zu einem Stern kollabieren kann. Sie konnten die kritische Dichte auch direkt abschätzen: sie beträgt rund 5000 Wasserstoffmoleküle pro Kubikzentimeter.

Wie im Haupttext beschrieben, eröffnet diese Art der Struktur-Rekonstruktion ganz neue Möglichkeiten, Beobachtungsdaten von Teleskopen wie z.B. ALMA auszuwerten: Mit ihrer Hilfe lassen sich die Sternentstehungsraten für entferntere Molekülwolken bestimmen, die einer direkten Beobachtung unzugänglich ist. ALMA beobachtet diese Wolken nicht auf dem Umweg über die Abschwächung des Lichts ferner Sterne, sondern über den Nachweis von Strahlung, wie sie der in den Wolken enthaltene Staub aussendet.

Wie funktioniert die Rekonstruktion der räumlichen Struktur der Wolken?
Durchquert das Licht ferner Sterne auf seinem Weg zur Erde eine Molekülwolke, wird einiges davon gestreut und absorbiert. Die Abschwächung des Lichts, die sich daraus für verschiedene hinter der Wolke stehende Sterne ergibt, lässt sich zu einer Art Karte zusammenfassen, die zeigt, durch wieviel Materie das Licht in dem betreffenden Teil der Wolke reisen musste (»Säulendichte«). Kainulainen und seine Kollegen passen ein einfaches Modell der räumlichen Struktur an die Säulendichte-Karte an. In diesem Modell haben Regionen mit höherer als der durchschnittlichen Dichte die Form mehr oder weniger länglicher Ellipsoide, die senkrecht zur Betrachtungsrichtung angeordnet sind. Der Vergleich mit Computersimulationen zeigt, dass solche Modelle die für die Sternentstehung wichtigen Eigenschaften der Wolke – insbesondere die Häufigkeit und Eigenschaften von Regionen höherer Dichte – richtig wiedergeben.

Weitere Informationen:

http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2014/PR_2014_04/PR_2014_04_de... - Online version of the press release with high-resolution images

Dr. Markus Pössel | Max-Planck-Institut für Astronomie
Weitere Informationen:
http://www.mpia.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften