Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astrochemie: Eine Umlaufbahn für ultrakalte Moleküle

05.06.2015

Erste Experimente im Speicherring CSR, mit dem sich die chemischen Bedingungen des Weltalls im Labor nachahmen lassen

Die Chemie des Weltalls lässt sich jetzt leichter auch auf der Erde untersuchen. Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg haben in einem weltweit einzigartigen Speicherring für ultrakalte Moleküle, in dem sie die Bedingungen des Weltalls nachahmen, nun erste Experimente vorgenommen.


Um die Moleküle im Speicherring CSR auf wenige Grad Celsius über dem absoluten Nullpunkt zu kühlen, übertragen in einem großen äußeren Vakuumbehälter Kupferbänder die tiefe Temperatur umlaufender Kühlleitungen auf eine innere Vakuumkammer, in denen sich die Ionen auf ihren Umlaufbahnen bewegen.

© MPI für Kernphysik


In der inneren Vakuumkammer erzeugen 16 Einheiten aus jeweils vier Elektroden die elektrostatischen Felder, die die Ionen auf ihren Bahnen halten.

© MPI für Kernphysik

Nachdem die Physiker den Speicherring über mehrere Jahre entwickelt und gebaut hatten, haben sie darin nun zum ersten Mal negativ geladene Moleküle, und zwar Hydroxidionen (OH–), bei wenigen Grad über dem absoluten Nullpunkt und bei sehr niedrigem Druck auf der Umlaufbahn gehalten und mit den Teilchen experimentiert. Mit dem CSR (Cryogenic Storage Ring) ist es nun möglich, die Astrochemie in interstellaren Wolken im Labor zu erforschen und grundlegende Einblicke in das Innenleben von Molekülen zu gewinnen.

Die Kälte des Weltalls bietet nicht gerade optimale Voraussetzungen für chemische Reaktionen, die mit etwas Wärme meistens besser oder überhaupt erst laufen. Trotzdem wurden im Weltall bereits mehr als 180 Moleküle entdeckt. Möglicherweise sind dort sogar elementare Bausteine des Lebens entstanden, die dann mit Kometen auf die Erde gelangt sein könnten.

Nicht nur Astrophysiker interessieren sich daher dafür, wie chemische Prozesse in interstellaren Wolken ablaufen. Klar ist, sie folgen ganz anderen Pfaden als die Chemie auf der Erde. Die Astrochemie wollen die Wissenschaftler des Max-Planck-Instituts für Kernphysik daher nun im Labor mit dem elektrostatischen Speicherring CSR untersuchen, den sie mit Hilfe von Forschern des Weizmann-Instituts im israelischen Rehovot realisiert haben.

Im Labor Bedingungen wie im Weltall nachzuahmen, erfordert jedoch viel experimentelles Geschick und auch einige Geduld: Fast drei Wochen dauerte es alleine, bis der Speicherring auf etwa minus 263 Grad Celsius, also wenige Grad über dem absoluten Nullpunkt, abgekühlt war. Dabei sank der Druck ersten Abschätzungen zufolge auf unter 10-13 Millibar, das ist weniger als der 10 Millionste Bruchteil eines Milliardstels des normalen Luftdrucks, der 1000 Millibar beträgt.

Solch ein niedriger Druck ist schwierig exakt zu messen. „Die rein elektrostatische Ionenoptik, extrem niedriger Druck und sehr tiefe Temperaturen erlauben es, darin auch sehr große Molekülionen in niedrigsten Quantenzuständen zu speichern“, bringt Robert von Hahn, der die Entwicklung des CSR geleitet hat, dessen wichtigste Merkmale auf den Punkt.

Bei interstellaren Temperaturen zehn Minuten auf der Umlaufbahn

Bald nachdem die Forscher diese exotischen Bedingungen im CSR geschaffen hatten, gelang es ihnen, positiv geladene Ionen des Edelgases Argon im Ring kreisen zu lassen. Diese Tests gaben grünes Licht für das erste Experiment: „Wir haben in unserer Ionenquelle Hydroxidionen präpariert, in den CSR eingeschossen und dort für mehr als zehn Minuten auf der Umlaufbahn gehalten – das ist an sich schon ein Erfolg“, erläutert Andreas Wolf, Experimentator und an der Entwicklung des CSR beteiligt. „Aber wir wollen natürlich wissen, ob sie auch wirklich auf Temperaturen wie im interstellaren Raum abgekühlt sind.“

Dazu kommt ein durchstimmbarer Laser zum Einsatz. Sein Strahl trifft die gespeicherten Hydroxid-Ionen (OH-), so dass diese ein Elektron verlieren. Es entstehen OH-Radikale, die – da ungeladen – aus der Bahn fliegen und auf einem Detektor landen. Bei welcher Farbe des Laserlichts dies passiert, zeigt an, in welchem Energieniveau sich das getroffene OH–-Ion befand, das heißt, wie viel innere Energie es besaß, bevor es die Energie des Laserlichts aufnahm. Eine erste Auswertung der Daten ergab, dass nicht nur die interne Schwingung der OH–-Ionen, sondern auch ihre Rotation soweit wie möglich zum Erliegen gekommen war – Anzeichen dafür, dass die Moleküle während der Speicherzeit im CSR also tatsächlich interstellare Temperaturen annehmen.

„Es sieht also ganz danach aus, als ob unsere neue ‚Maschine‘ alle Erwartungen erfüllt“, sagt Klaus Blaum, Direktor und Leiter der Abteilung Gespeicherte und gekühlte Ionen am Max-Planck-Institut für Kernphysik. „Der CSR wird seine Stärken bei unseren geplanten Experimenten zur Chemie des Weltraums also voll ausspielen können“, fügt Holger Kreckel, Leiter der Gruppe ASTROLAB am Heidelberger Institut hinzu.

Wozu ein ultrakalter Speicherring?

In interstellaren Wolken sind die Teilchendichten extrem gering. Die Temperaturen sinken sehr nahe an den absoluten Nullpunkt heran, bis auf 10 Kelvin, das sind minus 263 Grad Celsius. Deshalb geht die interstellare Chemie völlig andere Wege als auf der Erde. Um zu verstehen, wie interstellare Moleküle entstehen und überleben können, sind Experimente unter vergleichbaren Bedingungen erforderlich.

Als Schlüssel zur molekularen Vielfalt im All haben Forscher Prozesse zwischen geladenen Molekülen, den Molekülionen, und neutralen Atomen und Molekülen ausgemacht. Freie Molekülionen sind extrem reaktiv, weshalb sie nur im extremen Vakuum längere Zeit bestehen können.

Das Innenleben der Moleküle wird durch die Quantendynamik ihrer Atomkerne und Elektronen bestimmt. Wechselwirkungen mit anderen Molekülen, Licht oder Wärmestrahlung können die Atome innerhalb der Moleküle anregen und chemische Reaktionen auslösen oder die Moleküle zum Leuchten bringen. Empfindliche Beobachtungen molekularer Prozesse, wie sie im CSR möglich sind, erlauben somit einen Blick in die submikroskopische Vielteilchen-Quantendynamik innerhalb der Moleküle, als Grundlage der Chemie.

Der ultrakalte Speicherring CSR

Ein neues, einzigartiges Werkzeug für solche Experimente ist der kryogene Speicherring CSR am MPIK. In extrem hohem Vakuum, erzeugt durch tiefste Temperaturen, werden Ionenstrahlen gespeichert. Auch für die Speicherung schwerer Moleküle, sogar von Clustern aus mehreren Molekülen, ist der CSR geeignet. Auf ihrem 35,4 Meter langen Rundkurs durch den Speicherring durchqueren sie vier gerade Wechselwirkungsstrecken. Hier stoßen sie auf andere atomare Teilchen, oder werden mit Laserlicht angeregt. Auf den Geraden liefern leistungsfähige Nachweisgeräte auch Daten zu einzelnen molekularen Reaktionsprozessen.

Für Experimente mit sehr schweren Molekülen oder Clustern kommt nur eine rein elektrostatische Ionenoptik in Frage; geeignete magnetische Ablenksysteme müssten riesige Ausmaße annehmen. Die ablenkenden und fokussierenden elektrostatischen Einheiten sitzen im Gegensatz zu einem magnetischen System innerhalb der Vakuumkammer. Insgesamt kommen 16 Quadrupoleinheiten zur Strahlfokussierung und 16 Ablenkeinheiten zum Einsatz. Ein viel höheres Vakuum als in anderen Ionenspeicherringen ist erforderlich: Im CSR muss die Dichte 1016-mal kleiner als in der Atmosphäre sein, entsprechend einem Druck von unter 10−13 mbar.

Die Vakuumkammer, die den Ionenstrahl im CSR umgibt, hat eine Temperatur von etwa minus 263 Grad Celsius. An 28 im Ring verteilten Stellen ist die Temperatur noch tiefer (nahe minus 271 Grad Celsius), um auch die flüchtigsten Bestandteile der Luft an einer kalten Oberfläche auszufrieren. Eine Kältemaschine verteilt flüssiges Helium (anfangs im superflüssigen Zustand) in einem Rohrsystem, das sich vielfach um den Ring windet. Nach dem Zwiebelschalen-Prinzip schirmen innere Wände die irdische Wärmestrahlung auf minus 230 Grad Celsius beziehungsweise minus 180 Grad Celsius ab. All dies befindet sich in einem äußeren Vakuumsystem – dem Isoliervakuum, das die Wärmeleitung nach außen unterbindet.

Das mechanische Design ist durch die Tieftemperatur-Anforderung bestimmt. Fast jedes Material schrumpft bei Kälte; ein ein Meter langes Edelstahlrohr etwa um drei Millimeter, wenn es von 20 Grad Celsius auf 263 Grad Celsius abgekühlt wird. Flexible Metallbälge entkoppeln die Bauteile, und alle Komponenten der Ionenoptik sind separat auf stabilen Betonsockeln verankert.

Ansprechpartner


Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-850

Fax: +49 6221 516-852

E-Mail: klaus.blaum@mpi-hd.mpg.de

 
Dr. Robert von Hahn
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-396

E-Mail: robert.von.hahn@mpi-hd.mpg.de


Prof. Dr. Andreas Wolf
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-503

E-Mail: andreas.wolf@mpi-hd.mpg.de

 
Dr. Holger Kreckel
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-517

E-Mail: holger.kreckel@mpi-hd.mpg.de

Prof. Dr. Klaus Blaum | Max-Planck-Institut für Kernphysik, Heidelberg
Weitere Informationen:
http://www.mpg.de/9260340/astrochemie-speicherring-csr-ultrakalt

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie