Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Asteroiden aus der Bahn werfen

02.09.2013
Trifft ein Asteroid auf die Erde, kann das verheerende Folgen haben. Um die Kollision zu verhindern, muss der heranrasende Himmelskörper aus seiner Bahn geworfen werden. Durch den Aufprall einer Raumsonde ist das möglich.

Die Erde vor etwa 65 Millionen Jahren: Tsunamis fegen über den Planeten, eine riesige Staubwolke verdunkelt den Himmel, saurer Regen geht auf Tiere und Pflanzen nieder. Für mehr als 50 Prozent aller Gattungen beginnt ein schleichender Niedergang. Auch die Dinosaurier werden diese apokalyptische Katastrophe nicht überleben.


Ein Asteroid trifft mit voller Wucht auf die Erde. Um diese Katastrophe zu verhindern, wollen Forscher herannahende Himmelskörper mit Satelliten beschießen. © Donald Davis

Auslöser war mit hoher Wahrscheinlichkeit ein etwa zehn Kilometer großer Asteroid, der im heutigen Golf von Mexiko einschlug und einen mindestens 170 Kilometer großen Krater in die Erdoberfläche bohrte. Ein aus heutiger Sicht unvorstellbares Szenario? Astronomen haben bislang fast 10 000 Asteroiden identifiziert, die der Erde sehr nahe kommen können. Tendenz steigend. Erst im Februar verletzte ein Meteorit fast 1500 Menschen, als er über der russischen Millionenstadt Tscheljabinsk explodierte. Er hatte einen Durchmesser von etwa 20 Metern, mit einem Gewicht von 10 000 Tonnen.

Weitaus größer sind die Objekte mit denen sich Frank Schäfer vom Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI in Freiburg beschäftigt. Der Forscher hat die mittelgroßen Kaliber von 100 bis zu 300 Metern Länge im Visier. Prallen Asteroiden dieser Größe auf die Erde, können sie einzelne Städte oder ganze Regionen auslöschen. Die Wissenschaftler haben nun in ersten Modellversuchen im Labor gezeigt, dass es möglich ist, die Asteroiden durch den Aufprall einer schweren Masse mit hoher Geschwindigkeit – zum Beispiel einer großen Raumsonde – aus der Bahn zu werfen.

Das Prinzip beim Zusammenstoß ist ähnlich wie beim Billard: Trifft eine Kugel auf die andere, ändert diese ihre Bahn. »Die Raumsonde überträgt beim Aufprall auf den Asteroiden nicht nur ihren eigenen Impuls. Hinzu kommt der Rückstoß durch die – entgegen der Einschlagrichtung – ausgeschleuderte Kratermasse«, beschreibt Schäfer eines der wesentlichen Testergebnisse. »Dieser Rückstoßeffekt wirkt wie ein Turbolader auf die Ablenkung des Asteroiden.« Die Versuche haben gezeigt, dass der übertragene Impuls durch diesen Effekt bis zu viermal größer ist, als das mit der Raumsonde alleine der Fall wäre.

Geschwindigkeiten von bis zu 10 km/s

Um dies genauer zu untersuchen, hängen die Forscher unterschiedliche Materialien mit asteroidenähnlichen Eigenschaften aus dichtem Quarzit, porösem Sandstein oder luftigem Beton an ein Pendel und beschießen diese mit kleinen Aluminiumprojektilen. Dabei haben sie herausgefunden, dass der Impulstransfer geringer wird, je poröser das Asteroidengestein ist. Die Beschusstaktik ist also besonders effizient für dichte, schwere Himmelskörper.

Bis zu 10 km/s sind die Geschosse im Labor schnell und können damit die anvisierte Aufprallgeschwindigkeit erreichen, die sich die Forscher für eine zukünftige Mission wünschen. Um den Impulsübertrag und damit die Effizienz des Aufpralls nachzuweisen, messen die Forscher mit Hilfe von Hochgeschwindigkeitskameras und Laserinterferometern den Ausschlag des Pendels. »In einem realen Fall würde der Einschlag einer Raumsonde die Geschwindigkeit des Asteroiden nur um wenige Zentimeter pro Sekunde ändern. Das reicht jedoch aus, dessen Bahn langsam aber im Lauf der Zeit signifikant abzulenken. Asteroiden auf Kollisionskurs mit der Erde muss man daher schon Jahre vorher beschießen, um einen möglichen Zusammenstoß abzuwenden«, erklärt Schäfer.

Der Pendeltest ist Teil des von der EU geförderten Weltraumprojekts NEOShield, das Alan Harris vom Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) koordiniert. Hier arbeiten Spezialisten aus Deutschland, Frankreich, Großbritannien, Spanien, USA und Russland an Wegen, die Erde vor »Near Earth Objects«, erdbahn-kreuzenden Asteroiden, zu schützen.

Eines der Ziele ist es, bis Mitte 2015 eine Weltraummission zu planen, bei der tatsächlich ein Asteroid abgelenkt werden kann. Versuchsobjekte gehen den Spezialisten nicht aus: Alleine im September stehen uns laut der amerikanischen Luft- und Raumfahrtbehörde NASA über 20 weitere »close approaches« bevor. »2008 HB38« kommt uns dabei am 15. des Monats mit knapp fünf Millionen Kilometern am nächsten.

Dr. Frank Schäfer | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/september/asteroiden-aus-der-bahn-werfen.html

Weitere Berichte zu: Asteroid Aufprall Impuls Labor Luft- und Raumfahrt Pendel Raumsonde Zusammenstoß

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten