Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Artificial atoms allow for magnetic resonance on individual cells

12.02.2013
Scientists at ICFO develop a technique for MRIs on a molecular scale

Researchers from the Institute of Photonic Sciences (ICFO), in collaboration with the CSIC and Macquarie University in Australia, have developed a new technique, similar to the MRI but with a much higher resolution and sensitivity, which has the ability to scan individual cells.

In an article published in Nature Nanotech, and highlighted by Nature, ICFO Prof. Romain Quidant explains how this was accomplished using artificial atoms, diamond nanoparticles doped with nitrogen impurity, to probe very weak magnetic fields such as those generated in some biological molecules.

The conventional MRI registers the magnetic fields of atomic nuclei in our bodies which have been previously excited by an external electromagnetic field. The collective response of all of these atoms makes it possible to diagnose and monitor the evolution of certain diseases. However, this conventional technique has a diagnostic resolution on a millimetric scale. Smaller objects do not give enough signal to be measured.

The innovative technique proposed by the group led by Dr. Quidant significantly improves the resolution at the nanometer scale (nearly one million times smaller than the millimeter), making it possible to measure very weak magnetic fields, such as those created by proteins. "Our approach opens the door for the performance of magnetic resonances on isolated cells which will offer new sources of information and allow us to better understand the intracellular processes, enabling noninvasive diagnosis," explains Michael Geiselmann, ICFO researcher who conducted the experiment. Until now, it has only been possible to reach this resolution in the laboratory, using individual atoms at temperatures close to the absolute zero (approx. -273 degrees Celsius.)

Individual atoms are structures that are highly sensitive to their environment, with a great ability to detect nearby electromagnetic fields. The challenge these atoms present is that they are so small and volatile that in order to be manipulated, they must be cooled to temperatures near the absolute zero. This complex process requires an environment that is so restrictive that it makes individual atoms unviable for potential medical applications. Artificial atoms used by Quidant and his team are formed by a nitrogen impurity captured within a small diamond crystal. "This impurity has the same sensitivity as an individual atom but is very stable at room temperature due to its encapsulation. This diamond shell allows us to handle the nitrogen impurity in a biological environment and, therefore, enables us to scan cells" argues Dr. Quidant.

To trap and manipulate these artificial atoms, researchers use laser light. The laser works like tweezers, leading the atoms above the surface of the object to study and extract information from its tiny magnetic fields.

The emergence of this new technique could revolutionize the field of medical imaging, allowing for substantially higher sensitivity in clinical analysis, an improved capacity for early detection of diseases, and thus a higher probability for successful treatment.

This research has been possible thanks to the support of the private foundation Cellex Barcelona.

ABOUT ICFO

ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia. ICFO is a center of research excellence devoted to the sciences and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists and technologists, and provide knowledge and technology transfer. As part of ICFO's goal to usher advances "made at ICFO" into society, the institute actively promotes the creation of spin-off companies by ICFO researchers.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center currently hosts more than 250 researchers and PhD students working in more than 60 different laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

ICFO researchers publish in the most prestigious journals and collaborate with a wide range of companies around the world. In recognition of research excellence, ICFO has been awarded the elite Severo Ochoa distinction by the Government of Spain. Foundation Cellex finances the NEST program at ICFO which makes possible many ambitious frontier research projects.

Albert Mundet | EurekAlert!
Further information:
http://www.icfo.eu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise