Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

APEX nimmt die Dunkelwolken im Stier ins Visier

15.02.2012
Bildveröffentlichung der Europäischen Südsternwarte (Garching)
Eine neue Aufnahme des Atacama Pathfinder Experiments (APEX) in Chile zeigt ein mehr als zehn Lichtjahre langes, gebogenes Filament aus kosmischem Staub. Darin verbergen sich zum einen neugeborene Sterne, zum anderen dichte Gaswolken, die kurz vor dem Kollaps stehen – dem Auftakt zur Bildung neuer Sterne. Die betreffende Region ist eines der nächstgelegenen Sternentstehungsgebiete. Die kosmischen Staubkörner darin sind so kalt, dass Beobachtungen wie diese hier mit der LABOCA-Kamera am APEX-Teleskop bei Wellenlängen von etwa einem Millimeter nötig sind, will man ihr schwaches Glimmen nachweisen.

Die Taurus-Molekülwolke liegt in einer Entfernung von etwa 450 Lichtjahren von der Erde im Sternbild Taurus (der Stier). Das hier vorgestellte Bild zeigt zwei Teile einer langen, filamentartigen Struktur in der Wolke, die auch unter den Bezeichnungen Barnard 211 und Barnard 213 bekannt sind. Diese Namen stammen aus einem fotografischen Atlas, in dem Edward Emerson Barnard Anfang des 20. Jahrhunderts Dunkelwolken in der Milchstraße erfasst hat. Den dazugehörigen Katalog veröffentlichte er unter dem Titel „On the dark markings of the sky“ - zu Deutsch „Über die dunklen Flecken am Himmel“. Die betreffenden Himmelsregionen erscheinen im sichtbaren Licht in der Tat als dunkle Gebiete, die weitestgehend frei von Sternen sind. Bereits Barnard erkannte, dass der Grund für diese Erscheinung Materie ist, die das Licht dahinterliegender Sterne absorbiert.

Heute wissen wir, dass Barnards dunkle Flecken am Himmel tatsächlich Wolken aus interstellarem Gas und Staub sind. Die Staubkörner – winzige Partikel, ähnlich sehr feinem Ruß oder Sand – absorbieren sichtbares Licht und versperren uns so den Blick auf die reichen Sternfelder hinter den Wolken. Die Taurus–Molekülwolke erscheint im sichtbaren Licht besonders dunkel, da sie keine massereichen Sterne hervorbringen kann; solche Sterne bringen die Nebel in anderen Sternentstehungsgebieten, zum Beispiel im bekannten Orionnebel, zum Leuchten. Die Staubkörner selbst geben eine schwache Wärmestrahlung ab. Da sie jedoch mit Temperaturen von etwa -260 °C sehr kalt sind, kann diese Strahlung nur bei viel größeren Wellenlängen als denen des sichtbaren Lichtes nachgewiesen werden, im sogenannten Millimeter-Bereich.
Die Gas- und Staubwolken sind jedoch nicht nur ein Hindernis für die Beobachtung dahinter liegender Sterne. Sie sind auch die Geburtsstätten neuer Sterne: Fallen solche Wolken unter ihrer eigenen Schwerkraft in sich zusammen, teilen sie sich dabei typischer Weise in kleinere Fragmente. In diesen Fragmenten wiederum können sich so genannte dichte Kerne ausbilden, in denen das Wasserstoffgas dicht und heiß genug wird, um Fusionsreaktionen zu zünden: ein neuer Stern ist entstanden. Der neugeborene Stern ist dabei zunächst noch von einem Kokon aus dichtem Staub umgeben, der Beobachtungen im sichtbaren Licht verhindert. Aus diesem Grund sind Beobachtungen bei längeren Wellenlängen, wie zum Beispiel im Millimeter-Bereich, unverzichtbar, um die ersten Stadien der Sternbildung zu verstehen.

Der obere rechte Teil des hier gezeigten Filaments wird als Barnard 211 bezeichnet, der untere linke Teil als Barnard 213. Die Millimeterwellenlängendaten der LABOCA-Kamera am APEX-Teleskop, die die Wärmestrahlung der kosmischen Staubkörner zeigen, sind in diesem Falschfarbenbild orange dargestellt und einem Bild im sichtbaren Licht überlagert, das den Sternreichtum der Himmelsregion zeigt. Der helle Stern oberhalb des Filaments ist φ Tauri, und der nur teilweise am linken Bildrand sichtbare Stern trägt die Bezeichnung HD 27482. Beide Sterne liegen näher an der Erde als das Filament und stehen in keiner physischen Verbindung zu ihm.

Beobachtungen zeigen, dass sich Barnard 213 bereits in Fragmente geteilt und so genannte "dense cores" oder dichte Kerne ausgebildet hat. Die hell leuchtenden Staubknoten zeigen an, dass sich sogar bereits Sterne gebildet haben. Barnard 211 dagegen befindet sich in einer früheren Phase der Entwicklung: Hier spielen sich gerade erst der Kollaps und die Unterteilung in Fragmente ab. Auch in dieser Wolke werden sich in Zukunft noch Sterne bilden. Diese Himmelsregion ist daher ideal geeignet, um die entscheidende Rolle zu untersuchen, die Barnards „dunkle Flecken am Himmel“ im Lebenslauf der Sterne spielen.

Die hier vorgestellten Beobachtungen wurden von Alvaro Hacar vom Observatorio Astronómico Nacional-IGN in Madrid (Spanien) und weiteren Teammitgliedern durchgeführt. Die LABOCA-Kamera arbeitet am 12 Meter-APEX-Submillimeterteleskop, das sich 5000 m über dem Meeresspiegel auf der Chajnantor-Hochebene in den chilenischen Anden befindet. APEX ist der Prototyp für ein Submillimeter-Teleskop der nächsten Generation, das Atacama Large Millimeter/submillimeter Array (ALMA), das ebenfalls auf der Chajnantor-Hochebene errichtet wird.

Zusatzinformationen

APEX ist ein Gemeinschaftsprojekt des Max-Planck-Instituts für Radioastronomie (MPIfR), des Weltraumobservatoriums Onsala (Onsala Space Observatory OSO) und der ESO, die auch für den Betrieb des Teleskopes verantwortlich zeichnet.

Das Atacama Large Millimeter/submillimeter Array (ALMA) ist eine internationale astronomische Einrichtung, die gemeinsam von Europa, Nordamerika und Ostasien in Zusammenarbeit mit der Republik Chile getragen wird. Bei Aufbau und Betrieb des Observatoriums ist die ESO federführend für den europäischen Beitrag, das National Radio Astronomy Observatory (NRAO) für den nordamerikanischen Beitrag und das National Astronomical Observatory of Japan (NAOJ) für den ostasiatischen Beitrag. Das Joint ALMA Observatory (JAO) übernimmt die übergreifende Projektleitung für den Aufbau, die Inbetriebnahme und den Beobachtungsbetrieb von ALMA.

Im Jahr 2012 feiert die Europäische Südsternwarte ESO (European Southern Observatory) das 50-jährige Jubiläum ihrer Gründung. Die ESO ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop der 40-Meter-Klasse für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird, das European Extremely Large Telescope (E-ELT).

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528226
E-Mail: eson-germany@eso.org

Alvaro Hacar González
Observatorio Astronómico Nacional (OAN-IGN)
Madrid, Spain
Tel: +34 915270107 ext 326
E-Mail: a.hacar@oan.es

Mario Tafalla
Observatorio Astronómico Nacional (OAN-IGN)
Madrid, Spain
Tel: +34 915270107 ext 337
E-Mail: m.tafalla@oan.es

Douglas Pierce-Price
ESO ALMA/APEX Public Information Officer
Garching, Germany
Tel: +49 89 3200 6759
E-Mail: dpiercep@eso.org

Carolin Liefke | ESO Science Outreach Network
Weitere Informationen:
http://www.eso.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schreiben mit dem Elektronenstrahl: Jetzt auch Nanostrukturen aus Silber
24.07.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Quantenkommunikation in freier Luft nimmt Fahrt auf
24.07.2017 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie