Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Antiteilchen auf Fehlersuche - Weltweit stärkste Positronenquelle am FRM II in Garching

30.09.2009
Die geheimnisvolle Antimaterie ist nicht nur exotisches Beiwerk in Kinofilmen wie "Illuminati", sondern auch ein faszinierendes Wissenschaftsgebiet.

An der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München werden die Antiteilchen von Elektronen gewonnen, die so genannten Positronen, und das in der weltweit höchsten Intensität. Die knapp eine Milliarde Positronen pro Sekunde kommen in der Nano-Materialforschung zum Einsatz: Sie entdecken Fehlstellen im Atomgitter und können dabei einzelne Elemente präzise unterscheiden.

Während Tom Hanks auf der Suche nach Antimaterie aus dem Teilchenphysiklabor CERN in der Schweiz quer durch Rom jagen muss, hat Dr. Christoph Hugenschmidt am FRM II in Garching pro Sekunde eine Milliarde Antiteilchen zur Verfügung. Das Positron ist dabei so harmlos wie sein Gegenpart, das Elektron. NEPOMUC (NEutron-induced POsitron source MUniCh) hat der TUM-Physiker die Neutronen-induzierte Positronenquelle genannt. Zusammen mit der Universität der Bundeswehr München betreibt der TUM-Lehrstuhl für Experimentalphysik E 21 diese weltweit intensivste Positronenquelle.

Das Besondere an der Positronenquelle in Garching ist, dass die Teilchen sich im Ultrahochvakuum durch magnetische und elektrische Felder fast verlustfrei bis zu den fünf verschiedenen Experimentierstationen leiten lassen. "Den Wissenschaftlern, die ihre Experimente an der Positronenquelle des FRM II durchführen, stehen damit bis zu 1000 Mal mehr Positronen pro Sekunde zur Verfügung als in jedem anderen Labor der Welt", sagt Hugenschmidt. Das spart wertvolle Experimentierzeit. Versuche mit Positronen, die sonst Wochen dauern, können am FRM II innerhalb von einigen Minuten oder Stunden durchgeführt werden. "Gleichzeitig haben wir die Empfindlichkeit gesteigert, und es lassen sich daher völlig neue Fragestellungen in der Grundlagenphysik beantworten", zählt Hugenschmidt weitere Vorteile auf. So untersucht man derzeit das negativ geladene Positronium, ein Teilchen, das aus zwei Elektronen und einem Positron besteht. Bei den drei Teilchen, die sich gegenseitig umkreisen, interessiert vor allem das Dreikörperproblem, das schon Kepler und Copernicus aufwarfen: Wie verlaufen die Bahnen dreier Körper unter dem Einfluss ihrer gegenseitigen Anziehung?

Die Positronen werden indirekt aus Neutronen des Reaktors erzeugt. Das Herzstück der Positronenquelle besteht aus einer Struktur aus Kadmium und Platinfolien. Das Kadmium fängt die Neutronen ein und gibt dabei hochenergetische Gammastrahlung ab. Die Energie dieser elektromagnetischen Strahlung wird in Platin gemäß der Einsteinschen Äquivalenz von Masse und Energie E=mc2 in Masse umgewandelt. Dabei entstehen zu gleichen Teilen Materie und Antimaterie: Elektronen und Positronen. Um die Positronen möglichst lange zum Experimentieren zu nutzen, muss man sie von Materie fernhalten. Denn bei Kontakt mit einem Elektron zerstrahlen sie sofort.

Positronen werden außer für Grundlagenexperimente vor allem in der Materialforschung eingesetzt, weil sie nicht nur Defekte im Atomgitter erkennen, sondern auch Atomsorten unterscheiden können. Je nach Element zerstrahlen die Positronen bei der Berührung mit den Elektronen unterschiedlich. Die dabei messbare Gammastrahlung ist wie ein Fingerabdruck spezifisch für ein Element. Die Empfindlichkeit der Positronen wiesen die Forscher um Christoph Hugenschmidt nun in einem Versuch mit Aluminium und Zinn nach. Unter einer nur 200 Nanometer dünnen Schicht aus 500 Lagen Aluminium-Atomen wurde eine einzelne Lage aus Zinn-Atomen eingebettet. Trotzdem konnten die Positronen die Zinnschicht aufspüren.

Diese Messtechnik soll nun nicht nur Defekte auf atomarer Ebene zeigen, sondern wird zukünftig auf dotierte Halbleiter und metallische Werkstoffe angewandt werden, um darin kleinste Verunreinigungen sichtbar zu machen. Dazu entwickelt Hugenschmidt gerade neue Messapparaturen an der Positronenquelle des FRM II und unternimmt Experimente in Kooperation mit der Universität der Bundeswehr München, der Ludwig-Maximilians-Universität München und dem Max-Planck-Institut für Kernphysik in Heidelberg.

Originalpublikationen:

Unprecedented intensity of a low energy positron beam;
C. Hugenschmidt, B. Löwe, J. Mayer, C. Piochacz, P. Pikart, R. Repper, M. Stadlbauer, and K. Schreckenbach;

Nucl. Instr. Meth. A 593 (2008) 616 - DOI: 10.1016/j.nima.2008.05.038

High elemental selectivity to Sn submonolayers embedded in Al using positron annihilation spectroscopy;
C. Hugenschmidt, P. Pikart, M. Stadlbauer, and K. Schreckenbach;
Phys. Rev. B77 (2008) 092105 - DOI: 10.1103/PhysRevB.77.092105
Kontakt:
Dr. Christoph Hugenschmidt
Technische Universität München
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
85748 Garching
Tel: +49.(0)89.289.14609
E-Mail: Christoph.Hugenschmidt@frm2.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://e21.frm2.tum.de/index.php?id=152L=2
http://mediatum2.ub.tum.de/node?cunfold=816691&dir=816691&id=816691

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics