Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antiferromagnete stellen Potenzial für die Spin-basierte Informationstechnologie unter Beweis

25.01.2018

Prinzip des einfachen Auslesens und Schreibens von digitaler Information in Antiferromagneten demonstriert – Grundlage für ultraschnelle und stabile Speicherelemente

Im aufstrebenden Feld der Spin-basierten Elektronik wird Information üblicherweise durch die Ausrichtung der Magnetisierung von ferromagnetischen Materialien gespeichert. Zusätzlich wird jedoch auch daran geforscht, Antiferromagnete zu nutzen.


Kristallstruktur von Mn2Au mit antiferromagnetisch geordneten magnetischen Momenten

Abb./©: Libor Šmejkal JGU

Antiferromagnete sind Materialien ohne makroskopische Magnetisierung, aber mit mikroskopisch wechselnder Ausrichtung ihrer magnetischen Momente. Hierbei wird die Information durch die Richtung der Modulation der magnetischen Momente gespeichert, ausgedrückt durch den sogenannten Néel-Vektor.

Antiferromagnete ermöglichen prinzipiell deutlich schnellere Schreibvorgänge und sind sehr stabil gegenüber externen Störfeldern. Allerdings bedeuten diese Vorteile auch, dass sowohl die Manipulation als auch das Auslesen der Orientierung des Néel-Vektors eine große Herausforderung darstellen. Dies konnte bisher nur für die halbmetallische Verbindung CuMnAs, also Kupfermanganarsenid, erreicht werden, die jedoch im Hinblick auf etwaige Anwendungen diverse Nachteile aufweist.

Wissenschaftlern des Instituts für Physik der Johannes Gutenberg-Universität Mainz (JGU) ist nun ein wesentlicher Fortschritt gelungen: Wie im Online-Wissenschaftsjournal Nature Communications publiziert, konnten sie an dünnen Schichten der bereits bei hohen Temperaturen antiferromagnetisch ordnenden metallischen Verbindung Mn2Au aus Mangan und Gold ein strominduziertes Schalten des Néel-Vektors experimentell nachweisen.

Insbesondere wurde dabei ein zehnfach größerer Magnetowiderstand als bei CuMnAs beobachtet. Entsprechende Berechnungen hat Libor Šmejkal erstellt, der im Rahmen einer Kollaboration mit der Akademie der Wissenschaften der Tschechischen Republik seine Promotion in der Arbeitsgruppe Sinova an der JGU durchführt.

„Diese Berechnungen sind wichtig zum Verständnis der experimentellen Arbeiten, die mein Doktorand Stanislav Bodnar vornimmt. Dadurch könnte Mn2Au zu einem Türöffner für zukünftige antiferromagnetische Spin-Elektronik werden“, erklärt Dr. Martin Jourdan, der Projektleiter der Studie. „Über ihren großen Magnetowiderstand hinaus ist ein entscheidender Vorteil dieser Verbindung, dass sie keine toxischen Komponenten enthält und auch bei höheren Temperaturen genutzt werden kann.“

Die Spin-Elektronik oder auch Spintronic stellt einen Schwerpunkt der Forschung am Institut für Physik der JGU dar und wird dort insbesondere von den Arbeitsgruppen Kläui im Experiment und Sinova in der Theorie betrieben. Finanziert wurde die Studie durch den transregionalen Sonderforschungsbereich SFB/TRR 173 Spin+X der TU Kaiserslautern und der Johannes Gutenberg-Universität Mainz.

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/08_physik_antiferromagnet_mn2au.jpg
Kristallstruktur von Mn2Au mit antiferromagnetisch geordneten magnetischen Momenten
Abb./©: Libor Šmejkal JGU

Veröffentlichung:
Stanislav Yu. Bodnar et al.
Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance
Nature Communications, 24. Januar 2018
DOI: 10.1038/s41467-017-02780-x
http://www.nature.com/articles/s41467-017-02780-x

Kontakt:
PD Dr. Martin Jourdan
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23635
Fax +49 6131 39-24076
E-Mail: jourdan@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/martin-jourdan/

Weiterführende Links:
https://www.klaeui-lab.physik.uni-mainz.de/ - Kläui-Lab
https://www.sinova-group.physik.uni-mainz.de/ - Interdisciplinary Spintronics Research Group
http://www.uni-kl.de/trr173/home/ - Transregional Collaborative Research Center “Spin+X – Spin in its collective environment”

Lesen Sie mehr:
http://www.uni-mainz.de/presse/aktuell/2533_DEU_HTML.php - Pressemitteilung „Nanostrukturen können gezielt beeinflusst werden“ (05.09.2017)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics