Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Angeregtes Zusammenspiel: Resonanzen in der Terahertz-Strahlung

30.03.2009
Physiker der Philipps-Universität haben gemeinsam mit Arbeitsgruppen aus Dresden und Wien herausgefunden, wie sich Halbleitermaterialien verhalten, wenn sie elektromagnetischer Strahlung im Terahertz-Frequenzbereich ausgesetzt sind.

Wie Professor Dr. Stephan W. Koch und seine Marburger Kollegen theoretisch vorhersagen konnten, beruhen die gemessenen Resonanzen auf zwei Wechselwirkungen, mit denen die im Halbleiter eingeschlossenen Elektronen auf die Strahlung reagieren: einer Kombination von kontinuierlichen Oszillationen und diskreten Energieübergängen. Die Wissenschaftler veröffentlichten ihre Ergebnisse in der aktuellen Ausgabe der renommierten Fachzeitschrift "Physical Review Letters".

In den letzten Jahren hat eine rasante Entwicklung in der Terahertz-Physik stattgefunden, einem Gebiet, das sich mit elektromagnetischer Strahlung hoher Frequenz zwischen Infrarot und Mikrowellenbereich beschäftigt. Während man bis vor wenigen Jahren noch von der so genannten Terahertz-Lücke im elektromagnetischen Spektrum sprach, hat die Terahertz-Strahlung heute bereits eine Vielzahl von technischen Anwendungen gefunden. "Aber auch in der Grundlagenforschung hat sich die Terahertz-Spektroskopie zu einem wichtigen Werkzeug entwickelt", erläutert Seniorautor Koch, "zum Beispiel, um interne Übergänge zu analysieren und zu manipulieren, die in Festkörpern und Molekülen stattfinden."

Ein solcher interner Übergang kann unter anderem bei Elektronen erzeugt werden, die in einer sehr dünnen Schicht eingesperrt sind, einem so genannten Quantenfilm. Dabei macht man sich einen interessanten quantenmechanischen Effekt zunutze: Während sich die Elektronen parallel zur Schicht frei bewegen und somit beliebige Energien annehmen können, ist die Bewegung senkrecht zur Schicht quantisiert, das heißt, die Elektronen können nur ganz bestimmte Energien annehmen. Man sagt, es komme zur Bildung von diskreten Energieniveaus. Ein Quantenfilm lässt sich unter anderem durch die Einbettung einer dünnen Halbleiterschicht zwischen zwei andere Halbleitermaterialien realisieren. In diesem Fall beträgt die Energiedifferenz der beiden untersten Energieniveaus typischerweise gerade einige Terahertz.

Trifft nun ein elektromagnetisches Feld mit geeigneter Frequenz auf den Quantenfilm, so existieren zwei grundlegend verschiedene Möglichkeiten der Wechselwirkung der Elektronen mit dem Feld: Einerseits kann die Energie der Terahertz-Strahlung dazu benutzt werden, einen internen Übergang zu induzieren, das heißt ein Elektron in das nächst höhere Energieniveau anzuheben. Zum anderen werden die Elektronen durch das momentan anliegende elektrische Feld in der Quantenfilmebene beschleunigt, so dass sie eine oszillatorische Bewegung mit der Frequenz des Terahertz-Feldes vollführen. Beide Prozesse senden wiederum charakteristische Terahertz-Strahlen aus, die miteinander interferieren und das ursprüngliche Feld verändern.

Physikern des Forschungszentrums Dresden-Rossendorf um Professor Dr. Manfred Helm ist es nun gelungen, diese Änderungen des Terahertz-Feldes an einem geeigneten System zu messen. Dabei zeigten die Spektren des abgestrahlten Feldes ein charakteristisches Verhalten, welches stark an die nach ihrem Entdecker benannten Fano-Resonanzen erinnert. Sie tauchen immer dann auf, wenn in einem physikalischen System ein diskreter Energieübergang an ein Kontinuum von Übergängen gekoppelt ist.

Die Marburger Halbleiterphysiker Professor Dr. Stephan W. Koch, Professor Dr. Mackillo Kira und Daniel Golde konnten mithilfe der von ihnen entwickelten mikroskopischen Theorie dieses charakteristische Verhalten eindeutig dem Zusammenspiel der beiden genannten Wechselwirkungsprozesse zuordnen. "Damit wurde zum ersten Mal ein Verfahren gefunden, welches es ermöglicht, diese grundlegenden Prozesse in einem Experiment direkt zu identifizieren und voneinander zu unterscheiden", erklärt Koch.

Des Weiteren ermöglicht das Verfahren, die relativen Stärken der beteiligten Wechselwirkungsprozesse im betrachteten System quantitativ zu bestimmen. Ein bemerkenswertes Resultat ist, dass sich die Methode nicht nur auf die Energieaufspaltungen in Quantenfilmen anwenden lässt, sondern prinzipiell auf alle internen Übergänge in Halbleiterstrukturen.

Originalveröffentlichung: Daniel Golde & al.: Fano Signatures in the Intersubband Terahertz Response of Optically Excited Semiconductor Quantum Wells, Phys. Rev. Lett. 102 (27 März 2009), Online-Ausgabe: http://link.aps.org/doi/10.1103/PhysRevLett.102.127403

Weitere Informationen:
Ansprechpartner: Professor Dr. Stephan W. Koch,
AG Theoretische Halbleiterphysik
Tel.: 06421 28-21336
E-Mail: stephan.w.koch@physik.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.102.127403
http://www.physik.uni-marburg.de/de/forschung/theoretische-halbleiterphysik/ag-startseite.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics