Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Am Rand der Galaxie

01.03.2017

Dieser farbenfrohe Streifen aus Sternen, Gas und Staub ist in Wirklichkeit eine Spiralgalaxie mit dem Namen NGC 1055, deren Durchmesser vermutlich um bis zu 15% größer ist als der unserer Milchstraße. Es scheint, als fehlten in NGC 1055 die für eine solche Galaxie typischen Spiralarme, da sie nur von der Seite beobachtbar ist. Allerdings sieht man in der Struktur der Galaxie seltsame Verwindungen, die vermutlich durch Wechselwirkung mit einer großen, benachbarten Galaxie entstanden sind. Aufgenommen wurde das Bild mit dem Very Large Telescope (VLT) der ESO.

In Bezug zur Erde können wir im ganzen Universum Spiralgalaxien unterschiedlichster Ausrichtung sehen. Manche sehen wir sozusagen von oben – Astronomen nennen das „face-on“ – wie zum Beispiel die Galaxie NGC 1232, deren Form an einen Strudel erinnert. In dieser Ausrichtung kommt die wahre Schönheit der Spiralarme und des hellen Galaxienkerns zum Vorschein, dafür ist es jedoch schwierig, eine Vorstellung von der dreidimensionalen Form der Galaxie zu bekommen.


Diese farbenfrohe Aufnahme des Very Large Telescope der ESO zeigt NGC 1055 im Sternbild Walfisch (lat. Cetus). Der Durchmesser der Galaxie ist vermutlich um bis zu 15% größer als der unserer Milchstraße. Es scheint, als fehlten bei NGC 1055 die für eine solche Galaxie typischen Spiralarme, da sie nur von der Seite beobachtbar ist. Allerdings sieht man in ihrer Struktur seltsame Verwindungen, die vermutlich durch Wechselwirkung mit einer großen benachbarten Galaxie entstanden sind.

Herkunftsnachweis: ESO

Andere Galaxien, wie beispielsweise NGC 3521, sehen wir unter einem bestimmten Winkel. Bei solchen geneigten Objekten lässt sich die dreidimensionale Struktur innerhalb der Spiralarme bereits erahnen. Um die gesamte Form einer Spiralgalaxie zu verstehen, ist jedoch eine Galaxie vonnöten, die wir von der Seite sehen – also „edge-on“ – wie beispielsweise NGC 1055.

Von der Seite bekommt man einen guten Überblick darüber, wie die Sterne – sowohl Regionen, in denen neue Sterne entstehen, als auch Bereiche mit alten Populationen – innerhalb der Galaxie verteilt sind. Aber auch die „Höhe“ der relativ flachen Scheibe und des Kerns, in dem es vor Sternen nur so wimmelt, sind aus dieser Richtung einfacher zu messen. Ein Teil der Spiralarme erstreckt sich auch in den dunklen Kosmos, sodass die Materie, die sich innerhalb der Arme befindet, besser beobachtbar ist, da die galaktische Ebene sie nicht mehr überstrahlt.

Eine solche Perspektive ermöglicht es Astronomen auch, die gesamte Form einer Galaxienscheibe sowie ihre Eigenschaften zu untersuchen. Ein Beispiel dafür sind Verwindungen, wie wir sie in NGC 1055 sehen. In der Galaxienscheibe finden sich Bereiche, die besonders verdreht erscheinen, vermutlich verursacht durch Wechselwirkungen mit der nahen Galaxie Messier 77 (eso0319) [1]. Diese Verwindungen sind hier sichtbar; die Scheibe von NGC 1055 ist leicht gekrümmt und scheint wie eine Welle durch den Kern zu laufen.

NGC 1055 liegt schätzungsweise 55 Millionen Lichtjahre entfernt im Sternbild Walfisch (lat. Cetus). Aufgenommen wurde das Bild mit dem Instrument FOcal Reducer and low dispersion Spectrograph 2 (FORS2), das am Unit Telescope 1 (Antu) des VLT am Paranal-Observatorium der ESO in Chile installiert ist. Dieses Bild stammt aus dem ESO Cosmic Gems-Programm (wörtlich „kosmische Edelsteine“), einer ESO-Initiative zur Erstellung von astronomischen Aufnahmen für Bildungs- und Öffentlichkeitsarbeit.

Endnoten

[1] Messier 77, auch NGC 1068 genannt, leuchtet aufgrund eines supermassereichen Schwarzen Lochs in der Mitte sehr hell. Die Galaxie stellt eines der uns nächsten Beispiele für sogenannte aktive Galaxien dar.

Weitere Informationen

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Links

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1707.

Dr. Carolin Liefke | ESO-Media-Newsletter
Weitere Informationen:
https://www.eso.org/public/germany/news/eso1707/

Weitere Berichte zu: ESO Galaxie Himmelsdurchmusterungen Observatorium Spiralarme Telescope VLT

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics