Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Altes Schulbuchwissen neu bestätigt: Zerfallsraten radioaktiver Stoffe sind konstant

01.10.2014

PTB-Forscher widerlegen die These, dass die Zerfallsrate manch radioaktiver Nuklide vom Abstand zwischen Erde und Sonne abhängt

Der Abstand zwischen Erde und Sonne hat keinen Einfluss auf die Zerfallsrate von radioaktivem Chlor. „Wieso sollte er auch?“, könnte man fragen, denn bekanntlich ist der Zerfall von Radionukliden verlässlich wie eine Schweizer Uhr.


Messungen des Zerfalls des Chlor-Isotops Cl-36

Wissenschaftler der Physikalisch-Technischen Bundesanstalt und der Ohio State University haben zwischen 2009 und 2013 zeitversetzt die normierte Aktivität, also den radioaktiven Zerfall, von Chlor-36 gemessen. Während die amerikanischen Messergebnisse periodisch schwanken, ist dies bei den PTB-Werten nicht der Fall. Die blaue Kurve verdeutlicht den Abstand zwischen Erde und Sonne (dargestellt als reziprokes Quadrat des Abstands in der astronomischen Einheit AE). Quelle: PTB

Doch US-amerikanische Wissenschaftler hatten kürzlich für Aufsehen gesorgt, als sie postulierten, die Zerfallsrate würde vom Fluss solarer Neutrinos und damit auch vom Abstand der Erde zur Sonne abhängen. Grundlage ihrer Vermutung waren unter anderem ältere Messdaten aus der Physikalisch-Technischen Bundesanstalt (PTB). Deren Forscher haben die These der Amerikaner nun eindeutig widerlegt.

Die Halbwertszeit radioaktiver Isotope, also der Zeitraum, in dem die Hälfte aller Atomkerne zerfallen ist, gilt als unveränderlich stabil. Beim Kohlenstoff-Isotop C-14 sind das beispielsweise 5700 Jahre. Man nutzt diese Eigenschaft unter anderem bei der Datierung archäologischer Funde.

Als eine Gruppe US-amerikanischer Wissenschaftler kürzlich Messdaten des radioaktiven Chlor-Isotops Cl-36 veröffentlichte, die jahreszeitliche Schwankungen aufwiesen, und dies mit dem Einfluss solarer Neutrinos erklärten, war die Aufregung groß. Umso mehr, da Neutrinos von der Sonne zwar in jeder Sekunde in milliardenfacher Zahl auf jeden Quadratzentimeter der Erde treffen, dabei aber fast wirkungslos bleiben – sie durchdringen die Erde, als wäre sie gar nicht da.

Wissenschaftler der Physikalisch-Technischen Bundesanstalt haben nun nachgemessen und ihre Ergebnisse in der Zeitschrift Astroparticle Physics veröffentlicht. Drei Jahre lang überprüften sie die Aktivität von Proben mit Cl-36, um mögliche jahreszeitliche Abhängigkeiten zu erkennen.

Während die US-Amerikaner die Zählraten mit Gasdetektoren bestimmt hatten, nutzte die PTB die sogenannte TDCR-Flüssigszintillationsmethode, die störende Einflüsse auf die Messungen weitestgehend kompensiert. Das Ergebnis: Die Messergebnisse der PTB schwanken deutlich weniger und ergeben keinen Hinweis auf eine jahreszeitliche Abhängigkeit bzw. die Einwirkung solarer Neutrinos.

„Wir gehen davon aus, dass andere Einflüsse viel wahrscheinlicher für die beobachteten Schwankungen sind“, erklärt PTB-Physiker Karsten Kossert. „Es ist bekannt, dass Änderungen der Luftfeuchte, des Luftdrucks und der Temperatur empfindliche Detektoren durchaus beeinflussen können.“

Mittlerweile sind die Daten einer weiteren Messreihe − diesmal für das Strontium-Isotop Sr-90 − ausgewertet und zur Veröffentlichung eingereicht worden, und auch hier zeigen selbst aufwendige Analysemethoden keinen Hinweis auf jahreszeitliche Schwankungen. Man kann somit davon ausgehen, dass es den Einfluss von solaren Neutrinos − zumindest in der postulierten Größenordnung − auf den radioaktiven Zerfall nicht gibt. if/ptb

Ansprechpartner
Dr. Karsten Kossert, PTB-Arbeitsgruppe 6.11 Aktivitätseinheit, Telefon: (0531) 592-6110, E-Mail: karsten.kossert@ptb.de

Originalveröffentlichungen
• Karsten Kossert, Ole J. Nähle: Long-term measurements of 36Cl to investigate potential solar influence on the decay rate. Astroparticle Physics 55 (2014) 33-36
• Karsten Kossert, Ole J. Nähle: Disproof of solar influence on the decay rates of 90Sr/90Y. Zu finden unter arXiv:1407.2493 [nucl-ex], Preprint
• J.H. Jenkins et al.: Additional experimental evidence for a solar influence on nuclear decay rates. Astroparticle Physics 37 (2012) 81-88

Physikalisch-Technische Bundesanstalt (PTB)
In Braunschweig und Berlin kommt die Zeit aus Atomuhren, werden Längen auch tief in der Nanowelt gemessen, forschen die Wissenschaftler an grundlegenden Fragen zu den physikalischen Einheiten, und die Mitarbeiter in den Laboratorien kalibrieren Messgeräte für höchste Genauigkeitsansprüche. Damit gehört die Physikalisch-Technische Bundesanstalt zu den ersten Adressen in der internationalen Welt der Metrologie. Als das nationale Metrologieinstitut Deutschlands ist die PTB oberste Instanz bei allen Fragen des richtigen und zuverlässigen Messens. Sie ist technische Oberbehörde des Bundesministeriums für Wirtschaft und Energie (BMWi) und beschäftigt an den beiden Standorten Braunschweig und Berlin insgesamt rund 1900 Mitarbeiter.

http://www.ptb.de/

Imke Frischmuth | PTB

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise