Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ALMA sieht "kosmisches Loch"

20.03.2017

Mit dem Atacama Large Millimeter/Submillimeter Array (ALMA) konnten Astronomen nun zum ersten Mal erfolgreich ein Radio-"Loch" um einen 4,8 Milliarden Lichtjahre entfernten Galaxienhaufen nachweisen. Das Bild hat die höchste Auflösung, mit der jemals ein solches Loch abgebildet werden konnte, das durch den Sunyaev-Zel'dovich-Effekt (SZ-Effekt) verursacht wird. Mit dem Bild stellt ALMA eindrucksvoll seine Fähigkeit unter Beweis, die Verteilung und Temperatur des Gases um Galaxienhaufen mit Hilfe des SZ-Effektes zu untersuchen.

Ein Forscherteam unter der Leitung von Tetsu Kitayama, an der Toho Universität in Japan, und Eiichiro Komatsu, am Max-Planck-Institut für Astrophysik in Deutschland, untersuchten mit ALMA das heiße Gas in einem Galaxienhaufen. Das heiße Gas ist eine wichtige Komponente, um die Eigenschaften und die Entwicklung der Galaxienhaufen zu verstehen.


Das Bild zeigt die Messung des SZ-Effekts im Galaxienhaufen RX J1347.5-1145 mit ALMA (blau). Das Hintergrundbild wurde vom Hubble-Weltraumteleskop aufgenommen. Die ALMA-Beobachtungen zeigen ein "Loch", das durch den SZ-Effekt verursacht wird.

Credit: ALMA (ESO/NAOJ/NRAO), Kitayama et al., NASA/ESA Hubble Space Telescope

Auch wenn das heiße Gas selbst keine Radiowellen ausstrahlt, die mit ALMA nachgewiesen werden könnten, so streut es stattdessen die Radiowellen des kosmischen Mikrowellenhintergrundes und erzeugt ein "Loch" rund um den Galaxienhaufen. Dies wird als Sunyaev-Zel'dovich-Effekt bezeichnet (siehe auch Hinweis unten).

Das Team beobachtete den Galaxienhaufen RX J1347.5-1145, der 4,8 Milliarden Lichtjahre entfernt ist. Dieser Galaxienhaufen ist bei Astronomen für seinen stark ausgeprägten SZ-Effekt bekannt und wurde schon oft mit Radioteleskopen beobachtet.

Diese Beobachtungen zeigten eine ungleichmäßige Verteilung des heißen Gases in diesem Haufen, die in Röntgenbeobachtungen nicht beobachtet werden konnte. Die Astronomen brauchten daher eine höhere Auflösung. Mit hochauflösenden Radiointerferometern konnte diese aber nur schwer erreicht werden, da das heiße Gas im Galaxienhaufen relativ gleichmäßig und über eine große Fläche verteilt ist.

ALMA nutzte das Atacama Compact Array, um diese Schwierigkeit zu überwinden. Diese Installation bietet mit ihren kleinen Antennen und der dicht gepackten Antennenkonfiguration ein breiteres Gesichtsfeld. Mit den Daten des Morita-Array können die Astronomen Radiowellen von Objekten präzise messen, die sich über einen großen Winkel am Himmel erstrecken.

Mit ALMA erhielt das Team so ein Bild des SZ-Effektes von RX J1347.5-1145 mit einer doppelt so hohen Auflösung und zehnmal besserer Empfindlichkeit als bisherige Beobachtungen. Dies ist das erste Bild des SZ-Effekts mit ALMA.

"Die neue ALMA-Beobachtung bestätigt nicht nur die bisherigen Beobachtungen, sondern liefert uns auch ein Bild mit der höchsten Auflösung und der höchsten Empfindlichkeit. Damit wird eine neue Ära der Wissenschaft mit dem SZ-Effekt eingeläutet", sagt Eiichiro Komatsu. "Aufgrund der Diskrepanz zwischen den Radio- und den Röntgenbeobachtungen gehen wir inzwischen davon aus, dass dieser Galaxienhaufen gerade eine gewaltige Verschmelzung erlebt, und wir denken, dass einer der Gasklumpen unglaublich heiß ist."

Hinweis:

Der kosmische Mikrowellenhintergrund (CMB) ist die Reststrahlung des Urknalls und seine Radiowellen erreichen uns aus allen Richtungen. Wenn die CMB-Strahlung das heiße Gas in einem Galaxienhaufen durchdringt, interagieren die Radiowellen mit energiereichen Elektronen im heißen Gas und gewinnen an Energie. Dadurch wird die Strahlung von Radiowellen zu einer höheren Energie hin verschoben. Von der Erde aus beobachtet, ist die Intensität des CMB im ursprünglichen Energiebereich rund um den Galaxienhaufen geringer. Dies wird als "Sunyaev-Zel'dovich-Effekt" bezeichnet, benannt nach Rashid Sunyaev (derzeit Direktor am Max-Planck-Institut für Astrophysik) und Yakov Zel'dovich, die diesen Effekt als Erste im Jahr 1970 vorhersagten.

Originalveröffentlichung

“The Sunyaev-Zel'dovich effect at 5″: RX J1347.5-1145 imaged by ALMA”

Kitayama et al.

Publications of the Astronomical Society of Japan, October 2016.

Publ Astron Soc Jpn Nihon Tenmon Gakkai 2016; 68 (5): 88. doi: 10.1093/pasj/psw082

https://academic.oup.com/pasj/article/68/5/88/2223567/The-Sunyaev-Zel-dovich-effect-at-5-RX-J1347-5-1145

Die Mitglieder des Forscherteams sind:

Tetsu Kitayama (Toho University), Shutaro Ueda (Japan Aerospace Exploration Agency), Shigehisa Takakuwa (Kagoshima University / Academia Sinica Institute of Astronomy and Astrophysics), Takahiro Tsutsumi (U. S. National Radio Astronomy Observatory), Eiichiro Komatsu (Max-Planck Institute for Astrophysics / Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo), Takuya Akahori (Kagoshima University), Daisuke Iono (National Astronomical Observatory of Japan / SOKENDAI), Takuma Izumi (The University of Tokyo), Ryohei Kawabe (National Astronomical Observatory of Japan / SOKENDAI / The University of Tokyo), Kotaro Kohno (The University of Tokyo), Hiroshi Matsuo (National Astronomical Observatory of Japan / SOKENDAI), Naomi Ota (Nara Women’s University), Yasushi Suto (The University of Tokyo), Motokazu Takizawa (Yamagata University), Kohji Yoshikawa (University of Tsukuba)

Kontakt:

Prof. Dr. Eiichiro Komatsu
Max-Planck-Institut für Astrophysik
Geschäftsführender Direktor
Tel: +49 89 30000 - 2208
Email: ekomatsu@mpa-garching.mpg.de
 
Dr. Hannelore Hämmerle
Max-Planck-Institut für Astrophysik
Pressesprecherin
Tel: +49 89 30000 - 3980
Email: pr@mpa-garching.mpg.de

Dr. Hannelore Hämmerle | Max-Planck-Institut für Astrophysik
Weitere Informationen:
http://www.mpa-garching.mpg.de/420567/news20170317

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten