Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alle Detektoren auf Empfang

18.05.2015

Physiker der Universität Jena an internationaler Studie beteiligt: Erste präzise Vorhersage des Gravitationswellensignals, das von zwei kollidierenden Neutronensternen ausgeht

Genau 100 Jahre ist es her, dass Albert Einstein mit seiner Allgemeinen Relativitätstheorie Raum und Zeit erschütterte: Jede bewegte Masse, jeder Stern oder jede Galaxis – so Einsteins Theorie – bringen die sie umgebende Welt ins Wanken.


Das von den Physikern der Uni Jena und ihren Kooperationspartnern vorhergesagte Gravitationswellensignal (oben) und Momentaufnahmen der Kollision zweier Neutronensterne (unten).

Abbildung: TPI/FSU, AG Brügmann

Wie eine elastische Folie wird die sogenannte Raumzeit durch die Bewegungen der Himmelskörper verformt und gerät dabei selbst in Schwingungen. Diese Erschütterungen setzen sich mit Lichtgeschwindigkeit als Gravitationswellen in alle Richtungen fort und müssten sich auch von der Erde aus messen lassen. Doch, obwohl Einsteins Theorie unstrittig und die Gravitationswellen seit einem Jahrhundert vorhergesagt sind, wartet die Wissenschaftsgemeinde noch immer darauf, diese Wellen im Universum direkt zu messen.

In diesem Jahr sollen mit dem LIGO (Laser Interferometer Gravitational Wave Observatory) in den USA und dem VIRGO-Interferometer in Italien zwei Detektoren für Gravitationswellen der neusten Generation ihre Arbeit aufnehmen. Doch ob sie endlich das ersehnte Gravitationswellensignal empfangen, das sei nicht nur eine Frage immer empfindlicherer Messtechnik.

„Wir brauchen auch möglichst präzise Vorhersagen, wie die Wellen physikalisch aussehen, nach denen wir fahnden“, sagt Prof. Dr. Bernd Brügmann von der Friedrich-Schiller-Universität Jena. „Nur so lassen sich die Signale mit ihrer äußerst geringen Amplitude aus dem allgemeinen Rauschen herausfiltern.“

Nachwuchswissenschaftlern in Brügmanns Team sind jetzt genau solche Vorhersagen gelungen: Dr. Sebastiano Bernuzzi und Tim Dietrich haben in der Fachzeitschrift „Physical Review Letters“ die bislang genaueste theoretische Beschreibung eines Gravitationswellensignals vorgelegt, das von zwei Neutronensternen ausgeht, die miteinander kollidieren (http://dx.doi.org/10.1103/PhysRevLett.114.161103).

Gemeinsam mit ihren Fachkollegen Alessandro Nagar und Thibault Damour aus Frankreich haben sie dafür ein analytisches Modell weiterentwickelt, das die Bewegung eines Systems aus zwei Körpern und die dabei entstehenden Gravitationswellen beschreibt. Auf diese Weise lässt sich die Berechnung des Gravitationswellensignales deutlich vereinfachen.

„Der Rechenaufwand verringert sich um ein Vielfaches“, macht Dietrich deutlich. Anstatt Monate auf das Ergebnis einer einzigen Simulation zu warten, die nur auf den weltweit größten Supercomputern durchgeführt werden können, schafft ein normaler PC die Berechnung binnen Sekunden.

Dank dieses Ansatzes ist es den Forschern jetzt möglich, präzise Angaben zu Energie und Wellenform der Signale zu machen, die bei der Kollision von zwei Neutronensternen zu erwarten sind, und so die Auswertung der mit den neuen Detektoren aufgezeichneten Signale wesentlich zu vereinfachen. Wann der erhoffte Nachweis von Gravitationswellen tatsächlich gelingt, dazu ist freilich keine Vorhersage möglich.

Die vorliegende Arbeit ist im Rahmen des Sonderforschungsbereichs/Transregio 7 „Gravitationswellenastronomie“ entstanden und wurde maßgeblich von der Arbeitsgruppe „Numerische Relativitätstheorie“ unter der Leitung von Prof. Brügmann vorangetrieben.

Original-Publikation:
Sebastiano Bernuzzi, Alessandro Nagar, Tim Dietrich, and Thibault Damour. Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger. Phys. Rev. Lett. 114, 161103 2015, http://dx.doi.org/10.1103/PhysRevLett.114.161103

Kontakt:
Prof. Dr. Bernd Brügmann
Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947100
E-Mail: bernd.bruegmann[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie