Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ätzend schnell geröntgt

22.03.2011
Physiker klären Vorgänge bei schneller chemischer Auflösung

Ein Durchbruch in der Untersuchung chemischer Vorgänge beim Ätzen und Beschichten von Materialien ist der Forschungsgruppe um den Kieler Physiker Professor Olaf Magnussen gelungen.

Die Arbeitsgruppe an der Christian-Albrechts-Universität zu Kiel (CAU) konnte in Zusammenarbeit mit Wissenschaftlern der europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble, Frankreich, erstmals erfolgreich aufdecken, was genau in Industrieverfahren passiert, die bei der Herstellung haarfeiner Metallkontakte eine Rolle spielen.

Diese werden beispielsweise bei der Produktion moderner Unterhaltungselektronik wie Flachbildschirmen eingesetzt. In der aktuellen Ausgabe (23.3.2011) des renommierten Journal of the American Chemical Society werden die Ergebnisse als Titelthema veröffentlicht.

Die Wissenschaftlerinnen und Wissenschaftler nutzten für ihre Forschung die intensive Röntgenstrahlung der ID32 Experimentierstation der ESRF. Der Röntgenstrahl wurde auf eine Goldoberfläche gerichtet, während sie sich in verdünnter Salzsäure auflöste. Da das reflektierte Röntgenlicht auf kleinste Veränderungen in der atomaren Anordnung an der Materialoberfläche empfindlich reagiert, kann der Abtrag während der Reaktion präzise gemessen werden. "Bisher gelangen solche Untersuchungen nur bei sehr langsamen Veränderungen des Materials", erklärt Magnussen.

Um Einblick in die schnellen Vorgänge zu gewinnen, die in industriell genutzten Verfahren ablaufen, musste die Messgeschwindigkeit um mehr als das Hundertfache erhöht werden. Dabei zeigte sich, dass der Abtrag selbst bei sehr schnellem Ätzen des Metalls äußerst gleichmäßig verläuft. "Der Werkstoff löst sich quasi Atomschicht für Atomschicht auf, ohne dass tiefere Löcher entstehen", so Magnussen weiter. In ähnlicher Weise konnte die Arbeitsgruppe auch die Anlagerung von Atomen bei der chemischen Beschichtung von Materialien nachverfolgen.

Zu den vielfältigen Anwendungen von chemischem Ätzen und Beschichten in der Industrie zählen Fertigungsprozesse in der Hochtechnologie, zum Beispiel bei der Herstellung elektronischer Bauelemente. Dafür müssen diese Reaktionen äußerst kontrolliert ablaufen. Um sie zu optimieren, werden Verfahren zum Ätzen und Beschichten weltweit intensiv erforscht. Bisher war es lediglich möglich, das fertige Produkt zu analysieren. Mit der Methode der Wissenschaftlerinnen und Wissenschaftler, die Änderungen innerhalb weniger tausendstel Sekunden nachweisen kann, werden die eigentlichen Vorgänge an der Materialoberfläche nun erstmals direkt auf atomarem Maßstab unter realistischen Bedingungen verfolgt.

Die Christian-Albrechts-Universität zu Kiel hat als Forschungsuniversität im Norden Deutschlands eine ausgewiesene internationale Expertise im Bereich Nanowissenschaften. Dazu gehört auch Forschung mit Synchrotronstrahlung. In einer Reihe von Forschungsverbünden, die durch das Bundesministerium für Bildung und Forschung gefördert werden, entwickeln Kieler Wissenschaftlerinnen und Wissenschaftler neue Methoden und Instrumente. Zudem bewirbt sich die CAU in der aktuellen Runde der Exzellenzinitiative mit einem Antrag auf einen Exzellenzcluster im Bereich Nanowissenschaften und Oberflächenforschung.

Die ESRF ist eine durch 19 Nationen geförderte europäische Forschungseinrichtung, die brillante Synchtrotronstrahlung für innovative Forschung zur Verfügung stellt und nutzt.

Originalveröffentlichung:
F. Golks, K. Krug, Y. Gründer, J. Zegenhagen, J. Stettner, O. Magnussen: High-speed in situ surface X-ray diffraction studies of the electrochemical dissolution of Au(001).

Journal of the American Chemical Society 2010, 133, 3772

Drei Abbildungen zum Thema stehen zum Download bereit:

http://www.uni-kiel.de/download/pm/2011/2011-027-1.png
Bildunterschrift: Graphische Darstellung der Messung. Der Röntgenstrahl fällt auf eine Goldoberfläche, die sich chemisch auflöst. Ein schneller Röntgendetektor fängt den reflektierten Strahl ein. Aus den zeitlichen Fluktuationen in der Strahlintensität werden die atomaren Änderungen während des Abtrags der Oberfläche abgelesen.

Copyright: CAU, Graphik: F. Golks

http://www.uni-kiel.de/download/pm/2011/2011-027-2.jpg
Bildunterschrift: Doktorand und Erstautor Frederik Golks beim Justieren der Goldprobe für das Experiment an der European Synchrotron Radiation Source.

Copyright: CAU, Foto: J. Stettner

http://www.uni-kiel.de/download/pm/2011/2011-027-3.jpg
Bildunterschrift: Europäische Synchrotronstrahlungsquelle ESRF in Grenoble, Frankreich.

Copyright: ESRF

Claudia Eulitz | idw
Weitere Informationen:
http://www.uni-kiel.de
http://www.uni-kiel.de/aktuell/pm/2011/2011-027-aetzend-schnell-geroentgt.shtml

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften