Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aerosolneubildung in der Atmosphäre im Labor nachgestellt

07.10.2013
Aerosolteilchen wirken kühlend auf die Atmosphäre. Nach gegenwärtigen Schätzungen entsteht etwa die Hälfte aller Wolkentropfen an Aerosolpartikeln, die sich in der Atmosphäre erst neu bilden.

Es ist daher wahrscheinlich, dass die Partikelneubildung durch Nukleation in der Atmosphäre eine Schlüsselrolle bei der Klimaentwicklung spielt. Welche Moleküle an diesem Prozess teilnehmen ist bisher noch unbekannt.


CLOUD Messkammer mit angeschlossenen Messapparaturen waehrend der CLOUD7 Messkampagne, CERN, Oktober 2012

Copyright: CERN

Einem internationalen Forschungsteam mit Beteiligung von Aerosolphysikern der Universität Wien um Paul Wagner ist es nun erstmals gelungen, die atmosphärischen Aerosolneubildungsraten im Rahmen des CLOUD-Experiments am CERN-Teilchenbeschleuniger zu reproduzieren.

Das CLOUD-Experiment beschäftigt sich mit einem der schwierigsten offenen Probleme der Atmosphärenphysik – der Erklärung, wie Aerosolpartikel in der Atmosphäre entstehen und damit das Klima beeinflussen. Eine Neubildung von Partikeln kann durch Zusammenlagerung von Dampfmolekülen zu Molekülclustern in der Atmosphäre erfolgen. Diese Nukleation setzt eine hinreichende Stabilität der Molekülcluster voraus. Die CLOUD-Untersuchungen erlauben die Bestimmung von Partikelentstehungsraten unter verschiedenen experimentellen Bedingungen und damit eine detaillierte Untersuchung des Nukleationsvorgangs.

Welche Prozesse wurden in CLOUD untersucht?

In CLOUD beobachteten die ForscherInnen die Bildung neuer atmosphärischer Partikel in einer speziell konstruierten Messkammer unter extrem präzise kontrollierter Temperatur, Feuchtigkeit und Konzentration kondensierender Dämpfe. "Wir haben die Entstehung von Partikeln aus Schwefelsäuredampf und winzigen Konzentrationen von Dimethylamin beobachtet", erklärt Paul Wagner von der Fakultät für Physik. Amine sind atmosphärische Dämpfe, die hauptsächlich durch menschliche Aktivitäten (vor allem in der Viehzucht) entstehen, aber auch von den Ozeanen und vom Erdboden emittiert werden. "Aminmoleküle sind dafür bekannt, dass sie starke chemische Bindungen mit Schwefelsäuremolekülen bilden. Ihre Anwesenheit könnte erklären, weshalb Nukleation sehr häufig in der bodennahen Atmosphäre beobachtet wird", so der Forscher.

Besonderheiten des CLOUD-Experiments

In der CLOUD-Kammer ist es möglich, wesentlich geringere Werte von Verunreinigungskonzentrationen zu erzielen als bei allen anderen bisher durchgeführten Experimenten. Dadurch sind wohldefinierte Experimente möglich und Komplikationen durch den Einfluss störender Gaskomponenten können vermieden werden. Mit hochempfindlichen Messinstrumenten werden die extrem niedrigen Dampfkonzentrationen sowie die molekulare Zusammensetzung der neugebildeten Molekülcluster bestimmt. Das CLOUD-Messsystem ermöglicht unter Verwendung eines CERN-Pionenstrahls auch die Messung einer Verstärkung der Nukleation durch kosmische Strahlung. Mit Hilfe eines internen elektrischen Feldes kann andererseits jeglicher Einfluss von Ionisation vollständig unterdrückt werden.

Was wurde durch CLOUD entdeckt?

"Unsere Experimente haben gezeigt, dass Amine bei Konzentrationen von nur einigen Molekülen pro 1012 Luftmoleküle (ppt) zusammen mit Schwefelsäuremolekülen äußerst stabile Aerosolpartikel bilden", so Wagner. Die Entstehungsraten sind ähnlich denen in der bodennahen Atmosphäre. "Es ist erstmals gelungen, die Entstehungsraten atmosphärischer Aerosolpartikel zu reproduzieren, dabei konnte auch die molekulare Zusammensetzung der Cluster präzise bestimmt werden", freut sich der Aerosolphysiker der Universität Wien. Die sehr detaillierten Messergebnisse konnten mit Hilfe quantenchemischer Berechnungen des molekularen Clusterbildungsvorganges erklärt werden. Somit erzielten die ForscherInnen ein grundlegendes Verständnis des Nukleationsprozesses auf molekularem Niveau.

Folgerungen für unser Verständnis der Klimaentwicklung

"Die Resultate deuten darauf hin, dass natürliche und anthropogene, also durch menschliche Aktivitäten hervorgerufene Quellen von Aminen das Klima beeinflussen könnten", erklärt Wagner. Es ist zu erwarten, dass anthropogene Amin-Emissionen in Zukunft ansteigen werden, insbesondere weil sich Amin-Gaswäsche voraussichtlich zu einer dominanten Technologie für die CO2-Abscheidung bei Kraftwerken mit fossilen Brennstoffen entwickeln wird. "Eine Ausbreitung von Aminen in nicht verunreinigte Gebiete könnte zu einer Erzeugung neuer Partikel in der Atmosphäre führen und zum kühlenden Einfluss von Partikeln auf das Klima beitragen" betont Wagner. Die ForscherInnen haben auch gezeigt, dass die Entstehungsrate von Amin-Schwefelsäure Partikeln in der Atmosphäre kaum durch Ionisation auf Grund kosmischer Strahlung beeinflusst wird. Bei Nukleation von atmosphärischen Schwefelsäure Partikeln mit anderen Dämpfen könnte der Einfluss der kosmischen Strahlung unterschiedlich sein.

Publikation in "Nature"
Almeida et al.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.
Advance Online Publication in Nature, Oktober 2013.
DOI.10.1038/nature12663
Wissenschaftlicher Kontakt
Ao. Univ.-Prof. Dr. Dr. h.c. Paul E. Wagner
Aerosolphysik und Umweltphysik
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-511 74
M +43-664-60277-511 74
paul.wagner@univie.ac.at
Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 3
alexandra.frey@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics