Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abbildung und Manipulation atomarer Spins

30.04.2010
Neue Möglichkeiten für zukünftige Computertechnologie

Wie die renommierte britische Fachzeitschrift „Nature Nanotechnology“ berichtet, hat ein internationales Forscherteam an der Universität Hamburg mit einem Rastertunnelmikroskop eine Kette von Kobaltatomen gebaut und deren magnetische Eigenschaften untersucht.

Die spinsensitiven Messungen („Spins“ - magnetische Momente von Elektronen) zeigen überraschenderweise, dass die beobachtete Form der Atome von deren magnetischer Orientierung abhängt – ein Effekt, der von Forschern der Kieler Universität erklärt werden konnte. Diese Arbeit ist die erste weltweit, die Spinsensitivität mit der Technik der Atommanipulation kombiniert, und eröffnet so neue Möglichkeiten, den Magnetismus künstlich hergestellter atomarer Strukturen zu untersuchen.

Der Magnetismus gehört zu den ältesten bekannten physikalischen Phänomenen und ist dennoch eines der aktuell spannendsten Forschungsgebiete. Neue Messtechniken erlauben dabei einen Einblick in die grundlegenden Wechselwirkungen, die die Eigenschaften magnetischer Strukturen auf der atomaren Skala bestimmen. Die treibende Kraft ist dabei der Wunsch nach höheren Speicherdichten auf Computerfestplatten und die damit einhergehende Miniaturisierung der schreib- und lesbaren Informationseinheiten.

Das digitale Alphabet besteht nur aus zwei Zeichen, „0“ und „1“, und ist daher ideal zur magnetischen Kodierung in Nord- und Südpol geeignet. Auf aktuellen Festplatten kann man sich die kleinsten Dateneinheiten – die Bits – wie winzige Kompassnadeln vorstellen: je nachdem, ob die Magnetisierungsrichtung nach Norden oder Süden zeigt, können Datenbits die Werte „0“ oder „1“ annehmen. Der Schreib-Lese-Kopf einer Festplatte kann die Bits beliebig auf Nord- oder Südpol ausrichten oder deren Ausrichtung einfach abfragen.

Das ultimative Ziel ist die Speicherung eines Bits als Magnetisierungsrichtung eines einzelnen Atoms. Bei dieser Miniaturisierung bestehen jedoch zwei Grundprobleme: i. Die Energiebarriere zwischen den Zuständen „0“ und „1“ nimmt mit der Strukturgröße ab, sodass thermische Fluktuationen zu Datenverlust führen können. ii. Die magnetischen Eigenschaften atomarer Strukturen lassen sich kaum vorhersagen: Ein einzelnes magnetisches Atom verhält sich eben nicht wie der Magnet, der eine Notiz am Kühlschrank festhält.

Bei den in Hamburg durchgeführten Experimenten wurden Kobaltatome auf eine Mangan-oberfläche aufgebracht. Die Manganatome ordnen sich magnetisch in Form einer Spirale. Diese Oberfläche wurde aus zwei Gründen gewählt: i. Thermische Fluktuationen der magnetischen Momente („Spins“) der Kobaltatome werden durch die sogenannte Austauschkopplung unterbunden und ii. die Kobaltatome haben, durch die Manganoberfläche vorgegebene, ortsabhängig variierende Spinrichtungen, was eine systematische Untersuchung ermöglicht. Als Messtechnik wurde spinpolarisierte Rastertunnelmikroskopie (SP-RTM) eingesetzt. Dabei tastet eine magnetische Spitze in einem Abstand von einigen Zehntel Nanometern einen Oberflächenbereich ab. Der gemessene Tunnelstrom ermöglicht ein Abbild der Elektronendichte und der lokalen Spinrichtung mit extrem hoher Ortsauflösung.

Überraschenderweise ist nicht nur die gemessene Höhe der Kobaltatome, sondern auch deren Form im SP-RTM Bild von der Spinrichtung abhängig. Mit Hilfe von parameterfreien Elektronenstrukturrechnungen konnten theoretische Physiker der Christian-Albrechts-Universität zu Kiel zeigen, dass hierfür spinabhängige orbitale Symmetrien der Kobaltelektronen verantwortlich sind. Dies hat zur Folge, dass jeder Spinrichtung eine spezifische Form zugeordnet werden kann und daher pro Atom im Prinzip mehr als nur ein Bit auslesbar ist. Durch Expertise in atomarer Manipulation, die im Rahmen einer Gastprofessur aus Ohio (USA) nach Hamburg gebracht wurde, konnte man experimentell noch einen Schritt weiter gehen: Die Kobaltatome können mit der Spitze eines Rastertunnelmikroskops beliebig positioniert werden und richten ihren Spin jeweils parallel zu den nächsten Nachbaratomen der Manganoberfläche aus. Dadurch kann die Spin-Richtung einzelner Atome gezielt eingestellt werden.

Die in dieser Arbeit erstmals demonstrierte Kombination von Spinsensitivität und atomarer Manipulation eröffnet neue Perspektiven bei der Herstellung und Charakterisierung atomarer magnetischer Strukturen.

Weitere Informationen:

D. Serrate, P. Ferriani, Y. Yoshida, S.-W. Hla, M. Menzel, K. von Bergmann, S. Heinze, A. Kubetzka and R. Wiesendanger
Imaging and Manipulating the Spin Direction of Individual Atoms, Nature Nanotechnology, online Veröffentlichung:

25 April 2010, DOI: 10.1038/NNANO.2010.64

Für Rückfragen:

Dipl.-Chem. Heiko Fuchs
Universität Hamburg
Institut für Angewandte Physik
Sonderforschungsbereich 668
Tel: 040 / 42838 - 69 59
E-Mail: hfuchs@physnet.uni-hamburg.de
URL: http://www.sfb668.de
Claudia Eulitz
Christian-Albrechts-Universität zu Kiel
Stabsstelle Presse und Kommunikation
Tel: 0431 / 880 - 4855
E-Mail: ceulitz@uv.uni-kiel.de

Birgit Kruse | idw
Weitere Informationen:
http://www.sfb668.de
http://www.uni-hamburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie