Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

4D-Filmproduktion mit ultrakurzen Elektronenblitzen

27.10.2015

Physiker der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik verkürzen Elektronenblitze auf unter 30 Femtosekunden. Damit gewinnen sie detaillierte Einblicke in die Bewegungen von Atomen in Molekülen.

Elektronen sind sonderbare Teilchen: sie haben sowohl Wellen- als auch Teilcheneigenschaften. Dieses Phänomen macht sich seit rund einem Jahrhundert die Elektronenmikroskopie zu Nutze, und gewährt uns so einen direkten Blick auf die fundamentalen Bausteine von Materie, den Molekülen und Atomen.


Treffen auf ein Biomolekül-Kristall ultrakurze Elektronenblitze, werden diese daran gestreut. Für jedes Biomolekül ergibt sich so ein charakteristisches Beugungsbild.

Grafik: Alexander Gliserin

Lange Zeit lieferte die Technik nur Standbilder, doch seit einigen Jahren machen Forscher enorme Fortschritte in der Kurzpuls-Lasertechnologie. Mit ihrer Hilfe erzeugen sie Elektronenblitze, die, ähnlich der Verschlusstechnik in der Fotografie, mit ihrem kurzen Aufleuchten extrem scharfe Bilder von sich bewegenden Atomen und Elektronen liefern. Dennoch blieben manche dieser ultraschnellen Prozesse immer noch unscharf.

Jetzt hat es ein Team vom Labor für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) geschafft, Elektronenblitze bis auf rund 28 Femtosekunden Dauer zu verkürzen.

Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde (10 hoch minus 15 s). Mit diesen Verschlusszeiten ist es nun möglich, die grundlegenden Bewegungen von Atomen in Molekülen und Festkörpern, ähnlich der Stroboskoptechnik, während einer chemischen Reaktion direkt zu beobachten und dann aus den Bildern einen Film zu erstellen.

Wer den Mikrokosmos und seine Dynamik erforschen will, benötigt eine Hochgeschwindigkeitskamera für Atome. Um die Bewegungen dieser Teilchen während einer Reaktion scharf abzubilden, benötigt man „Verschlusszeiten“ im Bereich von Femtosekunden. Denn genauso schnell verläuft das Geschehen in chemischen Reaktionen und Festkörpern ab. Femtosekunden-lange Verschlusszeiten stellt die Kurzpulslasertechnik zur Verfügung, aber Laserlicht kann die Atome nicht räumlich auflösen.

Jetzt ist es Physikern vom Labor für Attosekundenphysik an der LMU und dem MPQ gelungen, Elektronenblitze mit einer Dauer von nur noch 28 Femtosekunden zu erzeugen. Das ist sechsmal kürzer, als es bisher möglich war. Die Länge der Materiewellen ist nur rund acht Pikometer; ein Pikometer ist ein billionstel Meter (10 hoch minus 12 m).

Aufgrund dieser kurzen Wellenlänge lassen sich bei Beugungsexperimenten selbst einzelne Atome erkennen. Treffen Elektronen auf ein Molekül oder Atom, werden sie aufgrund ihrer kurzen Wellenlänge unterschiedlich stark abgelenkt und erzeugen so am Detektor ein Interferenzmuster, aus dem man die atomare 3D-Struktur der Probe rekonstruiert. Sind die Impulse kurz genug, entsteht ein scharfer Schnappschuss der Bewegung.

Um die neue Technik zu testen, haben die Physiker die Elektronenblitze in einem Beugungsexperiment an einem Biomolekül verwendet. Künftig sollen diese Elektronenblitze in Anrege-Abfrage-Experimenten eingesetzt werden. Dabei wird ein optischer Laserpuls auf ein Molekül geschickt, wodurch es zu einer Reaktion angeregt wird.

Kurz darauf trifft der Elektronenblitz auf die Probe und erzeugt ein Beugungsbild von der momentanen Struktur. Extrem viele solcher Schnappschüsse bei unterschiedlichen Verzögerungszeiten zwischen Laser- und Elektronenblitzen ergeben dann einen Film von der atomaren Dynamik.

Mit der Elektronenblitz-Technologie erhält man daher nicht nur ein räumliches Bild der atomaren Struktur, sondern zusätzlich einen Einblick in ihre Dynamik. Insgesamt gewinnt man so einen vierdimensionalen Eindruck von Molekülen und deren Atombewegungen während einer Reaktion.

„Mit unseren Elektronenblitzen sind wir nun in der Lage, sehr viel detailreichere Einblicke in die Vorgänge in Festkörpern und Molekülen zu gewinnen als bisher“, erklärt Dr. Peter Baum, der Leiter des Experiments. „Wir können nun die schnellsten bekannten atomaren Bewegungen in vier Dimensionen, nämlich in Raum und Zeit, aufzeichnen“, sagt er.

Nun wollen die Physiker die Dauer der Elektronenblitze noch weiter verkürzen, denn je kürzer die Verschlusszeiten werden, desto schnellere Bewegungen wird man aufzeichnen. Ziel der Forscher ist es, die noch schnelleren Bewegungen von Elektronen in angeregten Atomen mit ihren Elektronenblitzen eventuell beobachten zu können. Thorsten Naeser

Originalveröffentlichung:

A. Gliserin, M. Walbran, F. Krausz, P. Baum
Sub-phonon-period compression of electron pulses for atomic diffraction
Nature Communications, 27. Oktober 2015, doi: 10.1038/ncomms9723

Kontakt:

Dr. Peter Baum
Max-Planck-Institut für Quantenoptik
Ludwig-Maximilians-Universität München
Am Coulombwall 1, 85748 Garching
Telefon: +49 (0)89 / 289 - 14102
E-Mail: peter.baum@lmu.de

Prof. Dr. Ferenc Krausz
Lehrstuhl für Experimentalphysik,
Ludwig-Maximilians-Universität München
Labor für Attosekundenphysik
Direktor am Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 - 600
Telefax: +49 (0)89 32 905 - 649
E-Mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten