Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

4D-Filmproduktion mit ultrakurzen Elektronenblitzen

27.10.2015

Physiker der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik verkürzen Elektronenblitze auf unter 30 Femtosekunden. Damit gewinnen sie detaillierte Einblicke in die Bewegungen von Atomen in Molekülen.

Elektronen sind sonderbare Teilchen: sie haben sowohl Wellen- als auch Teilcheneigenschaften. Dieses Phänomen macht sich seit rund einem Jahrhundert die Elektronenmikroskopie zu Nutze, und gewährt uns so einen direkten Blick auf die fundamentalen Bausteine von Materie, den Molekülen und Atomen.


Treffen auf ein Biomolekül-Kristall ultrakurze Elektronenblitze, werden diese daran gestreut. Für jedes Biomolekül ergibt sich so ein charakteristisches Beugungsbild.

Grafik: Alexander Gliserin

Lange Zeit lieferte die Technik nur Standbilder, doch seit einigen Jahren machen Forscher enorme Fortschritte in der Kurzpuls-Lasertechnologie. Mit ihrer Hilfe erzeugen sie Elektronenblitze, die, ähnlich der Verschlusstechnik in der Fotografie, mit ihrem kurzen Aufleuchten extrem scharfe Bilder von sich bewegenden Atomen und Elektronen liefern. Dennoch blieben manche dieser ultraschnellen Prozesse immer noch unscharf.

Jetzt hat es ein Team vom Labor für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) geschafft, Elektronenblitze bis auf rund 28 Femtosekunden Dauer zu verkürzen.

Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde (10 hoch minus 15 s). Mit diesen Verschlusszeiten ist es nun möglich, die grundlegenden Bewegungen von Atomen in Molekülen und Festkörpern, ähnlich der Stroboskoptechnik, während einer chemischen Reaktion direkt zu beobachten und dann aus den Bildern einen Film zu erstellen.

Wer den Mikrokosmos und seine Dynamik erforschen will, benötigt eine Hochgeschwindigkeitskamera für Atome. Um die Bewegungen dieser Teilchen während einer Reaktion scharf abzubilden, benötigt man „Verschlusszeiten“ im Bereich von Femtosekunden. Denn genauso schnell verläuft das Geschehen in chemischen Reaktionen und Festkörpern ab. Femtosekunden-lange Verschlusszeiten stellt die Kurzpulslasertechnik zur Verfügung, aber Laserlicht kann die Atome nicht räumlich auflösen.

Jetzt ist es Physikern vom Labor für Attosekundenphysik an der LMU und dem MPQ gelungen, Elektronenblitze mit einer Dauer von nur noch 28 Femtosekunden zu erzeugen. Das ist sechsmal kürzer, als es bisher möglich war. Die Länge der Materiewellen ist nur rund acht Pikometer; ein Pikometer ist ein billionstel Meter (10 hoch minus 12 m).

Aufgrund dieser kurzen Wellenlänge lassen sich bei Beugungsexperimenten selbst einzelne Atome erkennen. Treffen Elektronen auf ein Molekül oder Atom, werden sie aufgrund ihrer kurzen Wellenlänge unterschiedlich stark abgelenkt und erzeugen so am Detektor ein Interferenzmuster, aus dem man die atomare 3D-Struktur der Probe rekonstruiert. Sind die Impulse kurz genug, entsteht ein scharfer Schnappschuss der Bewegung.

Um die neue Technik zu testen, haben die Physiker die Elektronenblitze in einem Beugungsexperiment an einem Biomolekül verwendet. Künftig sollen diese Elektronenblitze in Anrege-Abfrage-Experimenten eingesetzt werden. Dabei wird ein optischer Laserpuls auf ein Molekül geschickt, wodurch es zu einer Reaktion angeregt wird.

Kurz darauf trifft der Elektronenblitz auf die Probe und erzeugt ein Beugungsbild von der momentanen Struktur. Extrem viele solcher Schnappschüsse bei unterschiedlichen Verzögerungszeiten zwischen Laser- und Elektronenblitzen ergeben dann einen Film von der atomaren Dynamik.

Mit der Elektronenblitz-Technologie erhält man daher nicht nur ein räumliches Bild der atomaren Struktur, sondern zusätzlich einen Einblick in ihre Dynamik. Insgesamt gewinnt man so einen vierdimensionalen Eindruck von Molekülen und deren Atombewegungen während einer Reaktion.

„Mit unseren Elektronenblitzen sind wir nun in der Lage, sehr viel detailreichere Einblicke in die Vorgänge in Festkörpern und Molekülen zu gewinnen als bisher“, erklärt Dr. Peter Baum, der Leiter des Experiments. „Wir können nun die schnellsten bekannten atomaren Bewegungen in vier Dimensionen, nämlich in Raum und Zeit, aufzeichnen“, sagt er.

Nun wollen die Physiker die Dauer der Elektronenblitze noch weiter verkürzen, denn je kürzer die Verschlusszeiten werden, desto schnellere Bewegungen wird man aufzeichnen. Ziel der Forscher ist es, die noch schnelleren Bewegungen von Elektronen in angeregten Atomen mit ihren Elektronenblitzen eventuell beobachten zu können. Thorsten Naeser

Originalveröffentlichung:

A. Gliserin, M. Walbran, F. Krausz, P. Baum
Sub-phonon-period compression of electron pulses for atomic diffraction
Nature Communications, 27. Oktober 2015, doi: 10.1038/ncomms9723

Kontakt:

Dr. Peter Baum
Max-Planck-Institut für Quantenoptik
Ludwig-Maximilians-Universität München
Am Coulombwall 1, 85748 Garching
Telefon: +49 (0)89 / 289 - 14102
E-Mail: peter.baum@lmu.de

Prof. Dr. Ferenc Krausz
Lehrstuhl für Experimentalphysik,
Ludwig-Maximilians-Universität München
Labor für Attosekundenphysik
Direktor am Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 - 600
Telefax: +49 (0)89 32 905 - 649
E-Mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schreiben mit dem Elektronenstrahl: Jetzt auch Nanostrukturen aus Silber
24.07.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Quantenkommunikation in freier Luft nimmt Fahrt auf
24.07.2017 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie