Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

40 000 Universen - Forschern am Max-Planck-Institut für Astrophysik gelingt bisher detailgenaueste Kartografierung des Kosmos

27.11.2009
Parallelwelten gehören eher ins Reich der Fiktion. Aber selbst seriöse Wissenschaftler beschäftigen sich mit dem Multiversum - wenngleich in einem etwas anderen Wortsinn.

So haben Forscher aus dem Max-Planck-Institut für Astrophysik dank eines neuen Computeralgorithmus die bisher detailgetreueste Kartografierung des sichtbaren Universums vorgenommen - und das gleich in 40 000 Versionen.


Das Weltall in 3-D: Ansicht (blau) und Querschnitte (rot) der über die 40000 möglichen Universen gemittelten, dreidimensionalen kosmischen Karte. MPI für Astrophysik

Jede davon zeigt ein mögliches Universum, passend zu den bekannten Galaxien. Diese 40.000 Karten vereinen unser momentanes Wissen über die beobachteten kosmischen Strukturen. Und ihre Unterschiede zeigen, wie unbekannte Regionen des Alls aussehen könnten. (Preprints arXiv:0911.2498 und arXiv:0911.2496).

Die endlosen Weiten des Universums sind erfüllt von Galaxien, deren Milliarden Jahre altes Licht wir heute in unseren Teleskopen beobachten. Dabei finden wird die fernen Milchstraßensysteme nicht beliebig im All verteilt, sondern sie zeichnen die Konturen eines gigantischen kosmischen Geflechts nach. Dieses Netz besteht aus mysteriöser unsichtbarer dunkler Materie und hat sich über die Äonen aus dem Zusammenspiel vieler physikalischer Phänomene gebildet.

Der Ursprung dieser Struktur liegt in den mikroskopischen Quantenfluktuationen, die während der ersten Sekundenbruchteile des Universums auftraten und formte sich in den folgenden fast 14 Milliarden Jahren unter dem wesentlichen Einfluss der Gravitation. Eine exakte Vermessung und Kartografierung gewährt daher Einblick in die Frühphasen des Weltalls kurz nach seiner Geburt, als der Raum noch mit Strahlung und heißem Plasma erfüllt war und es weder Sterne noch Galaxien gab. Zudem liefern Analysen dieser Struktur Aufschluss über die Eigenschaften der Materie, über Gravitation und Galaxienbildung sowie über geometrische Eigenschaften von Raum und Zeit.

Anders als Seefahrer und Entdecker vergangener Zeiten können Astronomen die "Landkarte" des Universums nicht selbst "erfahren", sondern nur mit Teleskopen aus der Ferne erarbeiten. Dabei stören Ungenauigkeiten die Messung. Insbesondere lassen sich lichtschwache Galaxien mit zunehmendem Abstand immer schlechter aufspüren: Die Information über die kosmische Struktur verschwindet bei großen Abständen im Nebel der Ungewissheit - das Netzwerk erscheint unscharf und lässt sich nur noch erahnen.

Eine wissenschaftlich gehaltvolle Karte des Weltalls muss daher neben der Darstellung der kosmischen Struktur auch noch Aussagen über deren "Glaubwürdigkeit" machen. Hierbei wird die Glaubwürdigkeit - gemäß dem Mathematiker Thomas Bayes (1702 bis 1761) - mittels einer Wahrscheinlichkeit quantifiziert, die ausdrückt, wie gut wir das kosmische Netz erkennen können.

Die Erstellung derartiger Karten bedarf der Durchmusterung von extrem hochdimensionalen Räumen und war bisher ein nicht zu bewältigendes Rechenproblem. Am Max-Planck-Institut für Astrophysik hat nun Jens Jasche den auf der Bayesischen Statistik basierenden Computeralgorithmus HADES (HAmiltonian Density Estimation and Sampling) entwickelt, der es erlaubt, die dreidimensionalen kosmischen Strukturen zu analysieren und zu bewerten.

HADES liefert nicht nur eine einzige Karte des Universums, sondern gleich einen Satz unterschiedlicher Karten, die alle im Mittel die gleichen durch die Beobachtungsdaten aufgezeigten Strukturen zeigen, sich aber in ihren sonstigen Details unterscheiden. Jede dieser Karten zeigt ein mögliches Universum, das mit den Daten kompatibel ist. Strukturen, die in allen Karten vorkommen, sind daher glaubwürdiger als Strukturen, die sich nur in wenigen Karten finden. Der Kartensatz liefert also die Information über die Vertrauenswürdigkeit aller kartografierten Strukturen und erlaubt eine vernünftige wissenschaftliche Analyse.

Basierend auf dieser Methode hat ein internationales Team von Wissenschaftlern des Max-Planck-Instituts für Astrophysik in Garching bei München und der Scuola Normale Superiore di Pisa in Italien aus den Galaxiendaten des Sloan Digital Sky Surveys die bisher detailgetreueste Abbildung unserer kosmischen Umgebung ermittelt. Die Analyse der Daten umfasst ein würfelförmiges Gebiet mit einer Seitenlänge von mehr als 2,1 Milliarden Lichtjahren und spiegelt das kosmische Geflecht in überraschender Qualität wieder. Dieses besteht, wie von Simulationen vorhergesagt, aus vielen filamentartigen Strukturen und großen leeren Regionen.

Insgesamt erzeugten die Forscher 40 000 solcher möglichen Universen und erhielten drei Terabyte an Daten, mittels derer sie die Glaubwürdigkeit der erkannten Strukturen bewerten und präzise Vertrauensgrenzen bestimmen können. Das gewonnene kosmische Kartenmaterial erlaubt nun weitergehende Analysen der Galaxien- und Strukturentstehung sowie die Vorhersage vieler physikalischer Effekte, die mittels der Mission des Satelliten Planck oder dem Radiointerferometer LOFAR gemessen und bestätigt werden können.

Zukünftige Beobachtungen der Galaxienverteilung werden noch weitaus größere und detailliertere kosmische Karten ermöglichen. Dann steht auch das Forscherteam am Max-Planck-Institut bereit, die Grenzen des bekannten Universums weiter in die Tiefen des Raumes zu verschieben.

Originalveröffentlichung:

J. Jasche, F.S. Kitaura, C. Li, T.A. Enßlin
Bayesian non-linear large scale structure inference of the Sloan Digital Sky Survey data release 7

arXiv:0911.2498

J. Jasche, F.S. Kitaura
Fast Hamiltonian sampling
arXiv:0911.2496
Weitere Informationen erhalten Sie von:
Jens Jasche
Max-Planck-Institut für Astrophysik, Garching
Tel.: +49 89 30000-2190
E-Mail: jjasche@mpa-garching.mpg.de
Dr. Torsten Enßlin
Max-Planck-Institut für Astrophysik, Garching
Tel.: +49 89 30000-2243
E-Mail: ensslin@mpa-garching.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops