Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Abbildung hilft Lasern beim Bau neuer Moleküle

06.12.2013
Internationales Wissenschaftlerteam entwickelt neues Rückkopplungsverfahren für die Optimierung von Laserpulsen in der chemischen Synthese

In mancher Beziehung ähnelt die traditionelle chemische Synthese dem Vorgang des Kochens. Will man das Endprodukt verändern, so muss man entweder die Zutaten oder deren Verhältnis abwandeln, auch Temperatur- oder Druckänderungen beeinflussen das Ergebnis.


Illustration der Steuerung chemischer Reaktionen durch Bestrahlung von Molekülen mit geeignet geformten Laserpulsen.(Foto: MPQ, Labor für Attosekundenphysik)

Wie ein arrivierter Chefkoch verfügen auch Chemiker über die Fähigkeit, durch Manipulation dieser Parameter Produkte zu entwickeln, die unser Leben verschönern. Doch da es dabei auch Widerstände zu überwinden gilt, halten die Forscher ständig Ausschau nach neuen Techniken.

Die Anwendung von Lasern in der chemischen Synthese ist seit deren Erfindung im Jahr 1960 ihr erklärtes Ziel.

Ein kurzer Lichtpuls mit der passenden Farbe und Dauer könnte, wenn er auf ein Molekül im genau richtigen Moment trifft, bestimmte chemische Bindungen modifizieren, damit sich die Atome in einer bevorzugten Konfiguration anordnen. In dieser Hinsicht spielt der Laser hier die Rolle einer neuen Art von Reagens in einer chemischen Reaktion. In der Praxis stellt aber sogar ein einzelnes Molekül ein so komplexes Gebilde dar, dass es schwierig ist, für seine gezielte Beeinflussung die richtigen Eigenschaften des Laserpulses zu finden. Außerdem können ausgefeilte Methoden eine nahezu unbegrenzte Zahl von unterschiedlichen Pulsprofilen liefern, was die systematische Suche nach der perfekten Laser-Molekül-Kombination ungemein erschwert.

Hier hat es sich bewährt, die in Frage kommenden Pulsformen mit Hilfe experimenteller Rückkopplung adaptiv zu suchen. Wie in der natürlichen Auslese haben Laserpulse, die ein besseres Ergebnis liefern, eine weit höhere Überlebenschance. Ihre charakteristischen Merkmale finden sich in dem maßgeschneiderten Puls, der schließlich das erwünschte Ergebnis liefert. Doch diese Methode ist nur so gut wie die Rückkopplung, auf der sie beruht.

In einem diese Woche in der Zeitschrift Nature Communications veröffentlichten Artikel beschreiben Forscher vom Max-Planck-Institut für Quantenoptik (MPQ), der Ludwig- Maximilians-Universität München (LMU) sowie dem Augustana College (SD) und der Kansas State University (KSU) in den USA ein deutlich verbessertes Rückkopplungsverfahren. Indem sie das Molekül während seiner Dissoziation in drei Dimensionen beleuchten, können sie den Laserpuls dafür optimieren, das Molekül in einen bestimmten Endzustand zu treiben. Diese Abbildungstechnik kann Feedback-Methoden ergänzen, die auf der optischen Spektroskopie beruhen. Darüber hinaus lassen sich aus den dreidimensionalen Bildern theoretische Vorstellungen darüber ableiten, auf welche Weise der Puls das Molekül beeinflusst und kontrolliert. In einem der untersuchten Fälle wurden die Ionen im Acetylen-Molekül unter der Bestrahlung mit Laserpulsen aus ihrer normalen HCCH Anordnung in die ungewöhnliche HHCC Konfiguration gebracht.

Aufbauend auf anfänglichen Arbeiten am MPQ haben Studenten am Augustana College ein Verfahren entwickelt, die Bilder so schnell in ein Rückkopplungssignal umzuwandeln, dass sie in dem Experiment genutzt werden konnten. Sie haben ferner ein System entwickelt, bei dem die ausgefeilte Bildanalyse mit der computergesteuerten Kontrolle des Experimentes verbunden werden konnte. Sobald die Methode sicher funktionierte, wurde sie bei einem Experiment am J.R. Macdonald Laboratory eingesetzt. Die ersten Ergebnisse regten schließlich die theoretischen Arbeiten an der LMU an, die zur Aufklärung des Kontrollmechanismus beitragen konnten.

„Das Experiment zeigt, dass eine durch die dreidimensionale Abbildung verbesserte Rückkopplung sowohl die Möglichkeiten steigert, chemische Reaktionen zu kontrollieren, als auch unser Verständnis von den dabei ablaufenden Prozesse vertieft“, sagt Matthias Kling, der zur Zeit dieser Arbeiten Forschungsgruppenleiter am MPQ und Assistenzprofessor an der KSU war. Und Regina de Vivie-Riedle, Professorin an der LMU und Leiterin des Theorie-Teams, erklärt: „Die neue Methode bietet die Möglichkeit, noch komplexere Systeme zu steuern, sogar größere Moleküle, Cluster und Nanoteilchen. Die mehrdimensionalen Daten bedeuten auch eine strengere Vorgabe für die Theorie und helfen uns bei der Verbesserung unserer Modelle.“

Die Arbeiten am Augustana College wurden von der National Science Foundation finanziert. Die KSU erhielt bei diesem Projekt Unterstützung vom U.S. Department of Energy. Weitere Förderungen kamen von der Deutschen Forschungsgemeinschaft sowie über den Exzellenz-Cluster „Munich Center for Advanced Photonics“ (MAP).
Originalveröffentlichung:
E. Wells, C.E. Rallis, M. Zohrabi, R. Siemering, Bethany Jochim, P.R. Andrews, U. Ablikim, B. Gaire, S. De, K.D. Carnes, B. Bergues, R. de Vivie-Riedle, M.F. Kling, and I. Ben-Itzhak
Adaptive Strong-field Control of Chemical Dynamics Guided by Three-dimensional Momentum Imaging

Nature Communications 4:2895 DOI: 10.1038/ncomms3895 (2013).

Kontakt:
Prof. Dr. Matthias Kling
Labor für Attosekundenphysik
Ludwig-Maximilians-Universität München,
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, Garching
Telefon: +49 (0)89 / 32 905 -234
E-Mail: matthias.kling@mpq.mpg.de
Prof. Dr. Regina de Vivie-Riedle
Ludwig-Maximilians-Universität München
Department Chemie
Butenandt-Str. 11, 81377 München
Telefon: +49 (0)89 / 2180 - 77 533 / Fax -77 133
E-Mail: Regina.de_Vivie@cup.uni-muenchen.de
Prof. Eric Wells
Department of Physics
Augustana College
2001 S. Summit Ave
Sioux Falls, SD 57197, USA
E-Mail: eric.wells@augie.edu
Prof. Itzik Ben-Itzhak
J.R. Macdonald Laboratory
Physics Department
Kansas-State University
116 Cardwell Hall, Manhattan, KS 66506, USA
E-Mail: ibi@phys.ksu.edu

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungsnachrichten

Aus dem Labor auf die Schiene: Forscher des HI-ERN planen Wasserstoffzüge mit LOHC-Technologie

19.04.2018 | Verkehr Logistik

Neuer Wirkmechanismus von Tumortherapeutikum entdeckt

19.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics