Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

36 auf einen Streich – Forscher beobachten „unmögliche“ Ionisation

12.11.2012
Mit dem weltstärksten Röntgenlaser hat ein internationales Forscherteam unter Hamburger Leitung ein überraschendes Verhalten von Atomen entdeckt:

Mit einem einzigen Röntgenblitz konnte die Gruppe um Daniel Rolles vom Center for Free-Electron Laser Science (CFEL) die Rekordzahl von 36 Elektronen auf einmal aus einem Xenon-Atom herausschießen. Das sind deutlich mehr, als bei der Energie der verwendeten Röntgenstrahlung rechnerisch überhaupt möglich ist. Die Wissenschaftler stellen ihre unerwarteten Beobachtungen im Fachblatt „Nature Photonics“ vor. Das CFEL ist eine Kooperation von DESY, der Max-Planck-Gesellschaft und der Universität Hamburg.

Verliert ein Atom Elektronen, bekommt es eine positive elektrische Ladung – es wird ionisiert. Diese Ionisation ist umso stärker, je mehr Elektronen dem Atom entrissen werden. Die Forscher um Rolles von der Max Planck Advanced Study Group am CFEL hatten an der Linac Coherent Light Source (LCLS) des US-Forschungszentrums SLAC in Kalifornien Atome des Edelgases Xenon mit intensiven Röntgenlaserblitzen beschossen. Die Lichtteilchen (Photonen) der verwendeten Röntgenstrahlung hatten mit 1,5 Kilo-Elektronenvolt (1,5 keV) rund tausendmal mehr Energie als sichtbares Licht. Trifft so ein energiereiches Photon auf ein Elektron in der Xenon-Atomhülle, gibt es seine Energie an das Elektron ab. Durch diesen Stoß kann das Elektron aus der Atomhülle herausgeschubst werden – je nachdem, wie fest es gebunden ist.

Rechnerisch lassen sich bei der verwendeten Energie bis zu 26 der 54 Elektronen des Edelgases herausschießen, die übrigen sind zu stark gebunden. Tatsächlich beobachteten die Wissenschaftler jedoch, dass bis zu 36 Elektronen aus den Atomen flogen. „Nach unserem Wissen ist das die höchste Ionisation, die jemals mit einem einzigen elektromagnetischen Impuls in einem Atom erreicht worden ist“, betont Rolles, der künftig eine Helmholtz-Nachwuchsgruppe bei DESY leiten wird. „Unsere Beobachtung zeigt, dass die bestehenden theoretischen Ansätze modifiziert werden müssen.“

Ursache für die „unmögliche“ Ionisation ist eine sogenannte Resonanz: Im verwendeten Energiebereich können die Xenon-Elektronen sehr viel Röntgenstrahlung aufnehmen. Manche werden dadurch direkt aus dem Atom hinausbefördert, andere gehen in einen sogenannten angeregten, das heißt energiereicheren Zustand über, sind aber noch gebunden. Fällt eines der angeregten Elektronen jedoch in seinen Ausgangszustand zurück, wird wiederum Energie frei, die einem anderen angeregten Elektron den nötigen Extra-Schubs geben kann, um es ganz aus dem Atom zu befördern. In seltenen Fällen wird auch das bereits angeregte Elektron von einem zweiten Photon aus dem Röntgenblitz getroffen und so aus der Atomhülle geschossen.

„Das LCLS-Experiment hat einen unerwarteten und zuvor unerreichten Ladungszustand produziert, indem gleich Dutzende Elektronen aus einem Atom katapultiert wurden“, unterstreicht Ko-Autor Benedikt Rudek, Doktorand am Heidelberger Max-Planck-Institut für Kernphysik, der die Daten analysiert hat. „Die absorbierte Energie pro Atom war mehr als doppelt so hoch wie erwartet.“ Dieser Resonanzeffekt ist für Xenon gerade bei einer Energie von 1,5 keV besonders stark. Entsprechend beobachteten die Forscher selbst bei einer höheren Energie von 2 keV nur weniger stark ionisierte Atome. Auf Grundlage der Messungen verfeinerten CFEL-Wissenschaftler ein mathematisches Modell, mit dem sich solche Resonanzen in schweren Atomen berechnen lassen. In Folgeexperimenten haben Forscher unter anderem Krypton und Moleküle mit schweren Atomen an der LCLS untersucht, wie Ko-Autor Artem Rudenko betont, der inzwischen an der Kansas State University arbeitet und eines dieser Folgeexperimente geleitet hat.

Die Beobachtungen haben auch praktische Bedeutung für die Forschung: „Unsere Ergebnisse liefern ein Rezept, um den Elektronenverlust in einer Probe zu maximieren“, erläutert Rolles. Das kann erwünscht oder unerwünscht sein. „Beispielsweise können Forscher unsere Ergebnisse nutzen, die ein sehr stark elektrisch geladenes Plasma erzeugen wollen.“ Bei der Untersuchung biologischer Proben hingegen sollten Wissenschaftler die Resonanzbereiche solcher schweren Atome vermeiden. "Die meisten biologischen Proben enthalten einige schwere Atome", betont Rolles. Im Resonanzbereich werden solche Proben an diesen Stellen besonders schnell beschädigt, was die Abbildungsqualität beeinträchtigen kann.

Für die Präzisionsmessungen an der LCLS diente eine von der Max Planck Advanced Study Group (ASG) am CFEL zusammen mit dem Max-Planck-Institut für Kernphysik, dem Max-Planck-Institut für medizinische Forschung und dem Max-Planck-Institut Halbleiterlabor entwickelte Experimentierkammer, die in insgesamt 40 Kisten komplett nach Kalifornien verschifft wurde. Diese CFEL-ASG Multi-Purpose chamber (CAMP) war drei Jahre an der LCLS aufgebaut und kam bei mehr als 20 Experimenten zum Einsatz.

An der Untersuchung waren außer dem Hamburger Center for Free-Electron Laser Science, DESY und dem US-Forschungszentrum SLAC mehrere Max-Planck-Institute sowie rund ein Dutzend Institutionen aus Deutschland, Frankreich, Japan und den USA beteiligt.

Originalveröffentlichung
Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses; Daniel Rolles et al.; Nature Photonics, 2012 (online vorab veröffentlicht); DOI: 10.1038/NPHOTON.2012.261
Wissenschaftliche Ansprechpartner
Daniel Rolles, Center for Free-Electron Laser Science (CFEL), +49 40 8998-6239, daniel.rolles@asg.mpg.de

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/
http://www.asg.mpg.de
http://www.flickr.com/photos/slaclab/5411016744/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle
16.10.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Kalte Moleküle auf Kollisionskurs
13.10.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise