Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3-D-Röntgenbild macht feinste Details eines Computerchips sichtbar

16.03.2017

Forschende des PSI haben detaillierte 3-D-Röntgenbilder eines handelsüblichen Computerchips erstellt. In ihrem Experiment haben sie ein kleines Stück aus dem Chip untersucht, das sie zuvor herausgeschnitten hatten. Diese Probe blieb dabei während der Messung unbeschädigt. Für Hersteller ist es eine grosse Herausforderung, zu bestimmen, ob der Aufbau ihrer Chips am Ende den Vorgaben entspricht. Somit stellen diese Ergebnisse eine wichtige Anwendung eines Röntgen-Tomografieverfahrens dar, das die PSI-Forschenden seit einigen Jahren entwickeln. Über die Ergebnisse berichten sie in der neuesten Ausgabe des Fachjournals Nature.

Die Stromleitungen in vielen der elektronischen Chips unserer Computer und Mobiltelefone sind nur 45 Nanometer breit, die Transistoren 34 Nanometer hoch. Während es heute Standard ist, so feine Strukturen herzustellen, ist es immer noch eine Herausforderung, den genauen Aufbau eines solchen fertigen Chips im Detail zu vermessen, um beispielsweise zu prüfen, ob er den Vorgaben entsprechend aufgebaut ist.


3-D-Darstellung der inneren Struktur eines Mikrochips (Prozessor der Firma Intel). Gezeigt ist der Blick direkt auf die Ebene, in der sich die Transistoren befinden.

Foto: Paul Scherrer Institut/Mirko Holler


Die PSI-Forschenden Mirko Holler (rechts) und Manuel Guizar-Sicairos an der Strahllinie cSAXS an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts.

Foto: Paul Scherrer Institut/Markus Fischer

Heutzutage nutzen Chip-Hersteller für solche Untersuchungen vor allem ein Verfahren, bei dem man den Chip Schicht für Schicht abträgt und dann nach jedem Schritt die Oberfläche mit einem Elektronenmikroskop untersucht; dieses ist als FIB/SEM – Focused Ion Beam/Scanning Electron Microscope – bekannt.

Jetzt haben Forschende des Paul Scherrer Instituts PSI die Strukturen in einem Chip zerstörungsfrei in 3-D mittels Röntgenstrahlen abgebildet, sodass der Verlauf der Stromleitungen und die Position der einzelnen Transistoren und anderer Schaltelemente deutlich sichtbar wurden.

„Die Bildauflösung, die wir hier erzeugen konnten, ist ähnlich hoch wie bei dem konventionellen Untersuchungsverfahren FIB/SEM“, erklärt Mirko Holler, Leiter des Projekts. „Dafür konnten wir zwei wesentliche Nachteile vermeiden: Erstens blieb bei uns die Probe unbeschädigt und wir haben die vollständige Information über die dreidimensionale Struktur. Zweitens vermeiden wir Verzerrungen der Bilder, die bei FIB/SEM entstehen, wenn die Oberfläche der einzelnen Schnitte nicht genau plan ist.“

Nanometergenau positioniert

Für ihre Untersuchungen haben die Forschenden ein besonderes Tomografieverfahren (Ptychotomografie) genutzt, das sie im Laufe der letzten Jahre entwickelt und immer weiter verfeinert haben und das heute die weltweit beste Auflösung von 15 Nanometern (15 millionstel Millimeter) bei vergleichsweise grossem untersuchtem Volumen bietet.

Bei dem Experiment wird das Untersuchungsobjekt an genau festgelegten Stellen mit Röntgenlicht aus der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts durchleuchtet – ein Detektor misst dann jeweils die Eigenschaften des Lichts nach dem Durchgang durch die Probe. Die Probe wird dann in kleinen Schritten gedreht und nach jedem Drehschritt wieder schrittweise durchleuchtet.

Aus der Gesamtheit der gewonnenen Daten lässt sich die dreidimensionale Struktur der Probe bestimmen. „Bei diesen Messungen muss man die Position der Probe auf wenige Nanometer genau kennen – das war eine der besonderen Herausforderungen beim Aufbau unseres Experimentierplatzes“, so Holler.

In ihrem Experiment haben die Forschenden kleine Stücke von zwei Chips untersucht – einem am PSI entwickelten Detektorchip und einem handelsüblichen Computerchip. Die Stücke waren jeweils rund 10 Mikrometer (also 10 tausendstel Millimeter) gross. Während die Untersuchung eines vollständigen Chips mit dem gegenwärtigen Messaufbau nicht möglich ist, sind die Vorteile des Verfahrens in dieser Form schon zum Tragen gekommen, sodass sich bereits die ersten Interessenten gemeldet haben, die am PSI Messungen durchführen möchten.

Ziel: ganze Mikrochips untersuchen

„Wir beginnen gerade, die Methode so weiterzuentwickeln, dass man damit in akzeptabler Messzeit ganze Mikrochips untersuchen kann. Dann wird es auch möglich werden, denselben Bereich eines Chips mehrfach zu untersuchen und damit zum Beispiel zu beobachten, wie er sich durch äussere Einflüsse verändert“, erklärt Gabriel Aeppli, Leiter des Forschungsbereichs Synchrotronstrahlung und Nanotechnologie am PSI.

Text: Paul Scherrer Institut/Paul Piwnicki


Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2000 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 370 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.


Kontakt/Ansprechpartner:
Dr. Mirko Holler
Labor für Makromoleküle und Bioimaging, Forschungsbereich Synchrotronstrahlung
und Nanotechnologie
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 36 13, E-Mail: mirko.holler@psi.ch

Originalveröffentlichung:
High-resolution non-destructive three-dimensional imaging of integrated circuits
Mirko Holler, Manuel Guizar-Sicairos, Esther H. R. Tsai, Roberto Dinapoli, Elisabeth Müller, Oliver Bunk, Jörg Raabe, Gabriel Aeppli
Nature 16 March 2017

Weitere Informationen:

http://psi.ch/6abJ - Darstellung der Mitteilung auf der Webseite des PSI mit weiteren Abbildungen, ausführlicheren Bildlegenden und einem Kurzfilm
http://psi.ch/MSmG - Ausführlicherer Artikel zu der verwendeten Methode

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

25.09.2017 | Biowissenschaften Chemie

Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas

25.09.2017 | Physik Astronomie

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten