Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

2+1 ist nicht immer 3 - In der Mikro-Welt macht Einigkeit nicht immer stark

02.05.2016

Wenn jemand ein liegengebliebenes Auto alleine schiebt, gibt es einen bestimmten Effekt. Wenn eine zweite Person hilft, ist das Ergebnis die Summe der Kräfte der beiden. Wenn zwei kleine Teilchen allerdings ein weiteres kleines Teilchen anschieben, ist der daraus resultierende Effekt nicht notwendigerweise die Summe ihrer Kräfte. Eine kürzlich in Nature Communications veröffentlichte Studie hat diesen merkwürdigen Effekt beschrieben, den Wissenschaftler als „Vielteilchen-Effekt“ bezeichnen.

In der mikroskopischen Welt, in der moderne miniaturisierte Maschinen an den Grenzen neuer Technologien operieren, sind die Dinge relativ einfach – solange wir es mit zwei Teilchen zu tun haben. Wenn weitere Teilchen hinzukommen, wird die Situation jedoch komplizierter, als es der gesunde Menschenverstand nahelegen würde.


Durch Laserstrahlen eingeschlossene Kolloide

Soft Matter Lab @ Bilkent University

Stellen Sie sich vor, dass zwei Personen ein liegengebliebenes Auto schieben: Die Gesamtkraft ist die Summe der Kräfte dieser beiden Personen. Entsprechend wäre es bei drei Personen die Summe der Kräfte von drei Personen und so weiter.

Stellen Sie sich nun ein Festkörperteilchen mit einer Größe von ein paar tausendstel Millimeter vor, ein sogenanntes Kolloid, eingetaucht in Flüssigkeit. Direkt davor befindet sich ein ähnliches Teilchen. Wenn es „kritische“ thermische Fluktuationen in der sie trennenden Flüssigkeit gibt, stoßen sie sich gegenseitig entweder ab oder ziehen sich an, ohne sich zu berühren – hierfür sind die Fluktuationen verantwortlich.

Anders ausgedrückt entsteht eine Wechselwirkungskraft oder „kritische Casimir“-Kraft, als wären die Teilchen durch eine unsichtbare Feder verbunden. Um kritische Fluktuationen zu erreichen, benötigen wir nur eine von zahlreichen transparenten Flüssigkeiten, bestehend aus einer Mischung aus zwei Flüssigkeiten, welche sich wie Öl und Wasser bei Erhöhung ihrer Temperatur allmählich trennen.

Was geschieht nun, wenn ein drittes Kolloid hinzukommt? „Etwas, das unserer Intuition widerspricht“, erklärt SISSA-Professor Andrea Gambassi, einer der Autoren der Studie und langjähriger Kollege von Prof. Siegfried Dietrich, Direktor am Max-Planck-Institut für Intelligente Systeme (MPI-IS) in Stuttgart. „Die Gesamtkraft, die eines der Teilchen ‚wahrnimmt‘, weicht von der Summe der Interaktionen mit den anderen beiden, wenn diese einzeln vorhanden sind, ab.”

Dietrich und Gambassi sind mit kritischen Casimir-Kräften vertraut: 2008 veröffentlichten sie gemeinsam eine Studie in Nature, in der diese Kräfte – die bereits seit 1978 theoretisch vorhergesagt wurden – erstmals direkt gemessen wurden. Dies geschah in Zusammenarbeit mit der experimentellen Gruppe von Prof. Clemens Bechinger, Leiter des 2. Physikalischen Instituts an der Universität Stuttgart und Max Planck Fellow am MPI-IS. „Einfach ausgedrückt“, führt Gambassi weiter aus, „summieren sich die Kräfte nicht linear, so wie sie es in unserem Alltagsleben tun. Hier haben wir es mit etwas zu tun, was Physiker als Vielteilchen-Effekt bezeichnen. Dieser ist typisch für durch Fluktuationen ausgelöste Kräfte.“

Die neue Studie beschreibt diesen Effekt zum ersten Mal in einem System bestehend aus Glas (Siliciumdioxid)-Mikrokugeln, die in eine Flüssigkeit getaucht wurden. Durch die Rekonstruktion kritischer Casimir-Kräfte erst mit nur zwei und danach mit drei Teilchen demonstrierten die Forscher die Nicht-Additivität dieser Kräfte. „Die Kenntnis dieser Effekte ist sowohl für die Grundlagen- als auch für die angewandte Forschung sehr wichtig – insbesondere für Wissenschaftler, die Mikromaschinen für viele verschiedene Aufgaben konstruieren. Jede Mikromaschine besteht aus mehreren mechanischen Teilen in Relativbewegung – um zu verstehen, wie die verschiedenen ‚Zahnräder‘ ineinander greifen, ist die Kenntnis der Vielteilchen-Interaktion, vor allem in Gegenwart von Flüssigkeiten, entscheidend“, erklärt Gambassi.

Laserstrahlen, optische Pinzette und kritische Mischungen

Das Experiment, durchgeführt von der von Professor Giovanni Volpe geleiteten Gruppe an der Universität Bilkent in der Türkei, startet mit Kolloiden, die in eine Mischung aus Wasser und Lutidin (einer öligen Flüssigkeit) eingetaucht werden. Unter 34 °C ähnelt diese Mischung Wasser, doch wenn die Temperatur erhöht wird, setzt ein Übergang ein: zuerst wird die Flüssigkeit aufgrund der Effekte kritischer Fluktuationen trüb. Danach beginnt sich das Öl abzutrennen und schwimmt auf dem Wasser. „Rund um diesen Phasenübergang beobachten wir die Vielteilchen-Effekte“, erklärt Volpe.

Die in Flüssigkeiten eingetauchten Kolloide bewegen sich jedoch zufällig und breiten sich mit Brownscher Bewegung aus, der typischen Bewegung mikroskopischer Objekte, die in eine Flüssigkeit eingetaucht werden. Sie wurde durch Einstein theoretisch erklärt. Um die Kolloide räumlich „einzuschließen“, wurde die Flüssigkeit durch dünne, auf einen Punkt fokussierte Laserstrahlen beleuchtet: Als die Teilchen in den Strahl eindrangen, tendierten sie dazu, dort zu bleiben, wo das Licht am stärksten war. So funktionierte der Laser wie eine Art optische Pinzette. Durch die Verwendung zweier Laserstrahlen, um zwei Kolloide nahe beieinander zu halten, war es möglich, ihre zufälligen Bewegungen mit einer Mikroskop-Videoaufnahme präzise zu messen. Danach wurden mit statistischen Methoden die beteiligten Kräfte rekonstruiert. Mit Hilfe einer weiteren optischen Pinzette fügten die Forscher schließlich ein drittes Teilchen hinzu.

„Bei Betrachtung des Phasenübergangs beobachteten wir beim Vergleich des Experiments mit zwei und drei Kolloiden, dass es keine lineare Addition der Kräfte gab und dass Vielteilchen-Effekte vorhanden waren“, erklärt Dietrich. „Natürlich würde die Situation bei der Hinzufügung weiterer Kolloide noch komplizierter und interessanter.“ Volpe sagt abschließend: „Auf diese Weise haben wir gezeigt, dass der Vielteilchen-Effekt real ist und konnten ihn mit unerwarteter Genauigkeit messen – vor allem, wenn man bedenkt, dass wir es hier mit Kräften im Bereich eines Tausendstels eines Millionstel-Gramms zu tun haben. Wir möchten sie nun für die Planung und Entwicklung neuer Mikromaschinen nutzen.“

Weitere Informationen:

http://www.nature.com/ncomms/2016/160421/ncomms11403/abs/ncomms11403.html
http://www.is.mpg.de/de/dietrich

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise