Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

2+1 ist nicht immer 3 - In der Mikro-Welt macht Einigkeit nicht immer stark

02.05.2016

Wenn jemand ein liegengebliebenes Auto alleine schiebt, gibt es einen bestimmten Effekt. Wenn eine zweite Person hilft, ist das Ergebnis die Summe der Kräfte der beiden. Wenn zwei kleine Teilchen allerdings ein weiteres kleines Teilchen anschieben, ist der daraus resultierende Effekt nicht notwendigerweise die Summe ihrer Kräfte. Eine kürzlich in Nature Communications veröffentlichte Studie hat diesen merkwürdigen Effekt beschrieben, den Wissenschaftler als „Vielteilchen-Effekt“ bezeichnen.

In der mikroskopischen Welt, in der moderne miniaturisierte Maschinen an den Grenzen neuer Technologien operieren, sind die Dinge relativ einfach – solange wir es mit zwei Teilchen zu tun haben. Wenn weitere Teilchen hinzukommen, wird die Situation jedoch komplizierter, als es der gesunde Menschenverstand nahelegen würde.


Durch Laserstrahlen eingeschlossene Kolloide

Soft Matter Lab @ Bilkent University

Stellen Sie sich vor, dass zwei Personen ein liegengebliebenes Auto schieben: Die Gesamtkraft ist die Summe der Kräfte dieser beiden Personen. Entsprechend wäre es bei drei Personen die Summe der Kräfte von drei Personen und so weiter.

Stellen Sie sich nun ein Festkörperteilchen mit einer Größe von ein paar tausendstel Millimeter vor, ein sogenanntes Kolloid, eingetaucht in Flüssigkeit. Direkt davor befindet sich ein ähnliches Teilchen. Wenn es „kritische“ thermische Fluktuationen in der sie trennenden Flüssigkeit gibt, stoßen sie sich gegenseitig entweder ab oder ziehen sich an, ohne sich zu berühren – hierfür sind die Fluktuationen verantwortlich.

Anders ausgedrückt entsteht eine Wechselwirkungskraft oder „kritische Casimir“-Kraft, als wären die Teilchen durch eine unsichtbare Feder verbunden. Um kritische Fluktuationen zu erreichen, benötigen wir nur eine von zahlreichen transparenten Flüssigkeiten, bestehend aus einer Mischung aus zwei Flüssigkeiten, welche sich wie Öl und Wasser bei Erhöhung ihrer Temperatur allmählich trennen.

Was geschieht nun, wenn ein drittes Kolloid hinzukommt? „Etwas, das unserer Intuition widerspricht“, erklärt SISSA-Professor Andrea Gambassi, einer der Autoren der Studie und langjähriger Kollege von Prof. Siegfried Dietrich, Direktor am Max-Planck-Institut für Intelligente Systeme (MPI-IS) in Stuttgart. „Die Gesamtkraft, die eines der Teilchen ‚wahrnimmt‘, weicht von der Summe der Interaktionen mit den anderen beiden, wenn diese einzeln vorhanden sind, ab.”

Dietrich und Gambassi sind mit kritischen Casimir-Kräften vertraut: 2008 veröffentlichten sie gemeinsam eine Studie in Nature, in der diese Kräfte – die bereits seit 1978 theoretisch vorhergesagt wurden – erstmals direkt gemessen wurden. Dies geschah in Zusammenarbeit mit der experimentellen Gruppe von Prof. Clemens Bechinger, Leiter des 2. Physikalischen Instituts an der Universität Stuttgart und Max Planck Fellow am MPI-IS. „Einfach ausgedrückt“, führt Gambassi weiter aus, „summieren sich die Kräfte nicht linear, so wie sie es in unserem Alltagsleben tun. Hier haben wir es mit etwas zu tun, was Physiker als Vielteilchen-Effekt bezeichnen. Dieser ist typisch für durch Fluktuationen ausgelöste Kräfte.“

Die neue Studie beschreibt diesen Effekt zum ersten Mal in einem System bestehend aus Glas (Siliciumdioxid)-Mikrokugeln, die in eine Flüssigkeit getaucht wurden. Durch die Rekonstruktion kritischer Casimir-Kräfte erst mit nur zwei und danach mit drei Teilchen demonstrierten die Forscher die Nicht-Additivität dieser Kräfte. „Die Kenntnis dieser Effekte ist sowohl für die Grundlagen- als auch für die angewandte Forschung sehr wichtig – insbesondere für Wissenschaftler, die Mikromaschinen für viele verschiedene Aufgaben konstruieren. Jede Mikromaschine besteht aus mehreren mechanischen Teilen in Relativbewegung – um zu verstehen, wie die verschiedenen ‚Zahnräder‘ ineinander greifen, ist die Kenntnis der Vielteilchen-Interaktion, vor allem in Gegenwart von Flüssigkeiten, entscheidend“, erklärt Gambassi.

Laserstrahlen, optische Pinzette und kritische Mischungen

Das Experiment, durchgeführt von der von Professor Giovanni Volpe geleiteten Gruppe an der Universität Bilkent in der Türkei, startet mit Kolloiden, die in eine Mischung aus Wasser und Lutidin (einer öligen Flüssigkeit) eingetaucht werden. Unter 34 °C ähnelt diese Mischung Wasser, doch wenn die Temperatur erhöht wird, setzt ein Übergang ein: zuerst wird die Flüssigkeit aufgrund der Effekte kritischer Fluktuationen trüb. Danach beginnt sich das Öl abzutrennen und schwimmt auf dem Wasser. „Rund um diesen Phasenübergang beobachten wir die Vielteilchen-Effekte“, erklärt Volpe.

Die in Flüssigkeiten eingetauchten Kolloide bewegen sich jedoch zufällig und breiten sich mit Brownscher Bewegung aus, der typischen Bewegung mikroskopischer Objekte, die in eine Flüssigkeit eingetaucht werden. Sie wurde durch Einstein theoretisch erklärt. Um die Kolloide räumlich „einzuschließen“, wurde die Flüssigkeit durch dünne, auf einen Punkt fokussierte Laserstrahlen beleuchtet: Als die Teilchen in den Strahl eindrangen, tendierten sie dazu, dort zu bleiben, wo das Licht am stärksten war. So funktionierte der Laser wie eine Art optische Pinzette. Durch die Verwendung zweier Laserstrahlen, um zwei Kolloide nahe beieinander zu halten, war es möglich, ihre zufälligen Bewegungen mit einer Mikroskop-Videoaufnahme präzise zu messen. Danach wurden mit statistischen Methoden die beteiligten Kräfte rekonstruiert. Mit Hilfe einer weiteren optischen Pinzette fügten die Forscher schließlich ein drittes Teilchen hinzu.

„Bei Betrachtung des Phasenübergangs beobachteten wir beim Vergleich des Experiments mit zwei und drei Kolloiden, dass es keine lineare Addition der Kräfte gab und dass Vielteilchen-Effekte vorhanden waren“, erklärt Dietrich. „Natürlich würde die Situation bei der Hinzufügung weiterer Kolloide noch komplizierter und interessanter.“ Volpe sagt abschließend: „Auf diese Weise haben wir gezeigt, dass der Vielteilchen-Effekt real ist und konnten ihn mit unerwarteter Genauigkeit messen – vor allem, wenn man bedenkt, dass wir es hier mit Kräften im Bereich eines Tausendstels eines Millionstel-Gramms zu tun haben. Wir möchten sie nun für die Planung und Entwicklung neuer Mikromaschinen nutzen.“

Weitere Informationen:

http://www.nature.com/ncomms/2016/160421/ncomms11403/abs/ncomms11403.html
http://www.is.mpg.de/de/dietrich

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden
19.10.2017 | Forschungsverbund Berlin e.V.

nachricht Gravitationswellen: Sternenglanz für Jenaer Forscher
19.10.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie

Ostfalia forscht an Ultraleichtflugzeug mit Elektroantrieb

19.10.2017 | Verkehr Logistik

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungsnachrichten