Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

2+1 ist nicht immer 3 - In der Mikro-Welt macht Einigkeit nicht immer stark

02.05.2016

Wenn jemand ein liegengebliebenes Auto alleine schiebt, gibt es einen bestimmten Effekt. Wenn eine zweite Person hilft, ist das Ergebnis die Summe der Kräfte der beiden. Wenn zwei kleine Teilchen allerdings ein weiteres kleines Teilchen anschieben, ist der daraus resultierende Effekt nicht notwendigerweise die Summe ihrer Kräfte. Eine kürzlich in Nature Communications veröffentlichte Studie hat diesen merkwürdigen Effekt beschrieben, den Wissenschaftler als „Vielteilchen-Effekt“ bezeichnen.

In der mikroskopischen Welt, in der moderne miniaturisierte Maschinen an den Grenzen neuer Technologien operieren, sind die Dinge relativ einfach – solange wir es mit zwei Teilchen zu tun haben. Wenn weitere Teilchen hinzukommen, wird die Situation jedoch komplizierter, als es der gesunde Menschenverstand nahelegen würde.


Durch Laserstrahlen eingeschlossene Kolloide

Soft Matter Lab @ Bilkent University

Stellen Sie sich vor, dass zwei Personen ein liegengebliebenes Auto schieben: Die Gesamtkraft ist die Summe der Kräfte dieser beiden Personen. Entsprechend wäre es bei drei Personen die Summe der Kräfte von drei Personen und so weiter.

Stellen Sie sich nun ein Festkörperteilchen mit einer Größe von ein paar tausendstel Millimeter vor, ein sogenanntes Kolloid, eingetaucht in Flüssigkeit. Direkt davor befindet sich ein ähnliches Teilchen. Wenn es „kritische“ thermische Fluktuationen in der sie trennenden Flüssigkeit gibt, stoßen sie sich gegenseitig entweder ab oder ziehen sich an, ohne sich zu berühren – hierfür sind die Fluktuationen verantwortlich.

Anders ausgedrückt entsteht eine Wechselwirkungskraft oder „kritische Casimir“-Kraft, als wären die Teilchen durch eine unsichtbare Feder verbunden. Um kritische Fluktuationen zu erreichen, benötigen wir nur eine von zahlreichen transparenten Flüssigkeiten, bestehend aus einer Mischung aus zwei Flüssigkeiten, welche sich wie Öl und Wasser bei Erhöhung ihrer Temperatur allmählich trennen.

Was geschieht nun, wenn ein drittes Kolloid hinzukommt? „Etwas, das unserer Intuition widerspricht“, erklärt SISSA-Professor Andrea Gambassi, einer der Autoren der Studie und langjähriger Kollege von Prof. Siegfried Dietrich, Direktor am Max-Planck-Institut für Intelligente Systeme (MPI-IS) in Stuttgart. „Die Gesamtkraft, die eines der Teilchen ‚wahrnimmt‘, weicht von der Summe der Interaktionen mit den anderen beiden, wenn diese einzeln vorhanden sind, ab.”

Dietrich und Gambassi sind mit kritischen Casimir-Kräften vertraut: 2008 veröffentlichten sie gemeinsam eine Studie in Nature, in der diese Kräfte – die bereits seit 1978 theoretisch vorhergesagt wurden – erstmals direkt gemessen wurden. Dies geschah in Zusammenarbeit mit der experimentellen Gruppe von Prof. Clemens Bechinger, Leiter des 2. Physikalischen Instituts an der Universität Stuttgart und Max Planck Fellow am MPI-IS. „Einfach ausgedrückt“, führt Gambassi weiter aus, „summieren sich die Kräfte nicht linear, so wie sie es in unserem Alltagsleben tun. Hier haben wir es mit etwas zu tun, was Physiker als Vielteilchen-Effekt bezeichnen. Dieser ist typisch für durch Fluktuationen ausgelöste Kräfte.“

Die neue Studie beschreibt diesen Effekt zum ersten Mal in einem System bestehend aus Glas (Siliciumdioxid)-Mikrokugeln, die in eine Flüssigkeit getaucht wurden. Durch die Rekonstruktion kritischer Casimir-Kräfte erst mit nur zwei und danach mit drei Teilchen demonstrierten die Forscher die Nicht-Additivität dieser Kräfte. „Die Kenntnis dieser Effekte ist sowohl für die Grundlagen- als auch für die angewandte Forschung sehr wichtig – insbesondere für Wissenschaftler, die Mikromaschinen für viele verschiedene Aufgaben konstruieren. Jede Mikromaschine besteht aus mehreren mechanischen Teilen in Relativbewegung – um zu verstehen, wie die verschiedenen ‚Zahnräder‘ ineinander greifen, ist die Kenntnis der Vielteilchen-Interaktion, vor allem in Gegenwart von Flüssigkeiten, entscheidend“, erklärt Gambassi.

Laserstrahlen, optische Pinzette und kritische Mischungen

Das Experiment, durchgeführt von der von Professor Giovanni Volpe geleiteten Gruppe an der Universität Bilkent in der Türkei, startet mit Kolloiden, die in eine Mischung aus Wasser und Lutidin (einer öligen Flüssigkeit) eingetaucht werden. Unter 34 °C ähnelt diese Mischung Wasser, doch wenn die Temperatur erhöht wird, setzt ein Übergang ein: zuerst wird die Flüssigkeit aufgrund der Effekte kritischer Fluktuationen trüb. Danach beginnt sich das Öl abzutrennen und schwimmt auf dem Wasser. „Rund um diesen Phasenübergang beobachten wir die Vielteilchen-Effekte“, erklärt Volpe.

Die in Flüssigkeiten eingetauchten Kolloide bewegen sich jedoch zufällig und breiten sich mit Brownscher Bewegung aus, der typischen Bewegung mikroskopischer Objekte, die in eine Flüssigkeit eingetaucht werden. Sie wurde durch Einstein theoretisch erklärt. Um die Kolloide räumlich „einzuschließen“, wurde die Flüssigkeit durch dünne, auf einen Punkt fokussierte Laserstrahlen beleuchtet: Als die Teilchen in den Strahl eindrangen, tendierten sie dazu, dort zu bleiben, wo das Licht am stärksten war. So funktionierte der Laser wie eine Art optische Pinzette. Durch die Verwendung zweier Laserstrahlen, um zwei Kolloide nahe beieinander zu halten, war es möglich, ihre zufälligen Bewegungen mit einer Mikroskop-Videoaufnahme präzise zu messen. Danach wurden mit statistischen Methoden die beteiligten Kräfte rekonstruiert. Mit Hilfe einer weiteren optischen Pinzette fügten die Forscher schließlich ein drittes Teilchen hinzu.

„Bei Betrachtung des Phasenübergangs beobachteten wir beim Vergleich des Experiments mit zwei und drei Kolloiden, dass es keine lineare Addition der Kräfte gab und dass Vielteilchen-Effekte vorhanden waren“, erklärt Dietrich. „Natürlich würde die Situation bei der Hinzufügung weiterer Kolloide noch komplizierter und interessanter.“ Volpe sagt abschließend: „Auf diese Weise haben wir gezeigt, dass der Vielteilchen-Effekt real ist und konnten ihn mit unerwarteter Genauigkeit messen – vor allem, wenn man bedenkt, dass wir es hier mit Kräften im Bereich eines Tausendstels eines Millionstel-Gramms zu tun haben. Wir möchten sie nun für die Planung und Entwicklung neuer Mikromaschinen nutzen.“

Weitere Informationen:

http://www.nature.com/ncomms/2016/160421/ncomms11403/abs/ncomms11403.html
http://www.is.mpg.de/de/dietrich

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie