Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

10 Bit Informationen mit einem einzigen Photon - Fortschritte für die Quantenkommunikation

07.02.2017

Die Quantenkommunikation könnte die nächste Entwicklungsstufe erklimmen. Denn Wissenschaftlern der University of Twente ist es gelungen, über 10 Bit Informationen mit einem einzigen Photon zu senden. Sie nutzten hierzu ein ausgeklügeltes Verfahren zur Erfassung von individuellen Photonen. Die aus der Studie gewonnenen Erkenntnisse könnten die Sicherheit und Geschwindigkeit der Quantenkommunikation verbessern. Die Forschungsergebnisse wurden nun in der Fachzeitschrift „Optics Express“ veröffentlicht.

Auf die Frage, wieviel Informationen mit einem Photon zu übertragen wären, würden die meisten Wissenschaftler vermutlich antworten, dass es sich um ein Bit handeln müsse. Bei einem Bit werden zwei Möglichkeiten transportiert, kann etwa „1“ oder „0“ gewählt werden.


Illustration eines großen Symbolalphabetes, das zur Kodierung umfangreicher Informationen (mehr als 10 Bit) in einem einzelnen Photon dienen kann.

University of Twente

Theoretisch aber gibt es keine Grenze für die Informationsmenge, die mit einem Photon zu verschicken ist. Allerdings beschränken zahlreiche praktische Gründe die Informationsmenge pro Photon. Forscher der University of Twente gelang es aber durch ein innovatives Verfahren, mit einer einzigen Lichtpartikel mindestens 10,5 Bit Informationen zu übertragen.

Alphabet mit 9072 Zeichen

Aber wie gelangten die Wissenschaftler zu dieser außergewöhnlichen Informationsmenge? „Sie können es vergleichen mit einem Laserpointer, mit dem Sie auf eine Buchstabentafel leuchten“, erläutert Prof. Dr. Pepijn Pinkse vom Forscherteam. Der beleuchtete Buchstabe sei die Information, die im Licht des Laserpointers enthalten sei. „Die Anzahl der Buchstaben auf der Tafel bestimmt die Menge an Informationen, die sie mit dem Licht versenden können.“ Der Hauptunterschied besteht aber darin, dass Pinkse und sein Team ein Alphabet mit 9072 Zeichen kreierten und die Information – anders als beim Beispiel Laserpointer – mit einem einzigen Photon übertragen wird.

Einzelne Photonen aufspüren

Und genau hierin lag die Herausforderung der Forschung: das Aufspüren einzelner Photonen (single foton detection). Rauschen – also beliebige Photonen – könnte die Messung behindern. Die Forscher erarbeiteten daher eine Strategie, um jede Störung zu beseitigen. Sie nutzten die Tatsache, dass einzelne blaue Photonen in exakt zwei rote Photonen zerfallen.

Die Forscher ließen das erste Photon ein Signal an den Detektor senden, der vergleichbar mit einer Digitalkamera ist. Die Folge: Der Detektor öffnete sich sehr kurz. Das zweite Photon wurde dagegen durch einen Spiegel auf den entsprechenden Buchstaben des künstlichen Alphabets gerichtet. Die Wissenschaftler ließen das Photon aber einen kleinen Umweg nehmen, so dass es genau zum gleichen Zeitpunkt am Zielbuchstaben ankam, als sich der Detektor öffnete. Da der Detektor nur zu diesem Zeitpunkt Photonen durchlässt, konnten die Forscher auf diese Weise Störungen vermeiden.

Maximal 270 Bits

Praktisch gesehen sei es schwierig, die maximale Informationsmenge zu bestimmen, die mit einem einzigen Photon gesendet werden könne, sagt Pinkse. „Nutzt man unser Verfahren, dann gibt es aber keine theoretische Grenze für die Informationsmenge, die verschickt werden kann. Die Informationsmenge ist abhängig von der Größe des kreierten Alphabets. Selbst wenn ein Alphabet mit so vielen Zeichen erstellt würde, wie es Atome in diesem Universum gibt, wäre es dennoch nur möglich, maximal 270 Bits mit einem Photon zu versenden.“

Höheres Niveau als Ziel

Prof. Pinkse, der sich übrigens in der Vergangenheit bereits einen Namen mit einer nicht zu hackenden Kreditkarte machte, sieht als bedeutendstes Ziel der Forschung, die Quantenkommunikation auf ein höheres Niveau zu heben. „Je mehr Informationen mit einen Photon zu übermitteln sind, desto sicherer und schneller ist die Quantenkommunikation zu gestalten.“

Die Studie realisierten Tristan Tentrup, Thomas Hummel, Tom Wolterink, Ravitej Uppu, Allard Mosk und Pepijn Pinkse von den Fachbereichen Complex Photonic Systems (COPS) und Laser Physics and Nonlinear Optics (LPNO) des Forschungsinstituts MESA+ an der University of Twente. Finanziert wurde die Studie teilweise von der Europäischen Union und der „Foundation for Fundamental Research on Matter“ (FOM).

Alf Buddenberg | University of Twente
Weitere Informationen:
http://www.utwente.nl/en/research/

Weitere Berichte zu: Bit Laserpointer Photon Quantenkommunikation innovatives Verfahren

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie