Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

10,4 Billionen Synapsen auf K Supercomputer simuliert

02.08.2013
Wissenschaftler aus Japan und Jülich haben ein neuronales Netzwerk bisher unerreichter Komplexität simuliert.

Das zugrunde liegende Modell bildet statistisch die Verschaltung des menschlichen Nervensystems nach. Es umfasst 1,73 Milliarden Nervenzellen, die über insgesamt 10,4 Billionen Kontaktstellen miteinander verbunden sind.


Der japanische Supercomputer K, der aktuell viertschnellste Superrechner der Welt.
Quelle: RIKEN


Gebäude des RIKEN Advanced Institute for Computational Science (AICS) und Standort des K-Supercmputers..
Quelle: RIKEN

Die Forscher nutzten erstmals alle 82.944 Prozessoren des K Supercomputers, des aktuell viertschnellsten Superrechners der Welt, für eine derartige neurowissenschaftliche Berechnung.

Die Simulation stellt die biologische Aktivität der Nervenzellen innerhalb einer Sekunde nach. Jede Zelle ist in dieser Zeit – in Übereinstimmung mit dem Aktivitätslevel des menschlichen Gehirns – im Schnitt 4,4-mal aktiv. Der im japanischen Kôbe installierte Supercomputer K benötigte für die Berechnung 40 Minuten. Insgesamt belegte die Berechnung rund 1 Petabyte Speicherplatz, ähnlich viel, wie der Arbeitsspeicher von 250.000 PCs. Wissenschaftler des Forschungszentrums Jülich, der japanischen RIKEN Forschungsinstitute in Wako-shi und Kobe (AICS) und des Okinawa-Instituts für Technologie (OIST) hatten die Simulation durch die Entwicklung neuer Datenstrukturen für die verwendete Simulationssoftware NEST überhaupt erst möglich gemacht.

„Das neuronale Netzwerk, das wir berechnet haben, entspricht trotz seiner enormen Größe gerade einmal einem Prozent des gesamten menschlichen Gehirns“, erläutert Prof. Markus Diesmann vom Jülicher Institut für Neurowissenschaften und Medizin, (INM-6). Die Nervenzellen wurden zufällig miteinander verknüpft, sodass sich noch keine neuen neurowissenschaftlichen Erkenntnisse ableiten lassen. „Dennoch ist die Simulation eine richtungsweisende Vorarbeit, beispielsweise für das Human Brain Project. Sie zeigt, was heute technologisch möglich ist und wo die Grenzen liegen.“

Wissenschaftler versprechen sich von der Simulation der Hirnaktivität neue Erkenntnisse zu hochkomplexen Fragen, etwa zu den Ursachen neurodegenerativer Erkrankungen wie Parkinson oder Demenz. Das europäische Human Brain Project, an dem das Forschungszentrum Jülich maßgeblich beteiligt ist, zielt darauf ab, das komplette Gehirn auf dem Computer zu simulieren. Dafür werden gigantische Rechenkapazitäten benötigt, wie sie erst die nächsten Rechnergenerationen mit „Exascale-Leistung“ erbringen können.

Die Hirnaktivität lässt sich bisher nur sehr stark vereinfacht auf Computern abbilden. Das nun zu Testzwecken erstellte Modell setzt nicht nur durch seine reine Größe, sondern auch aufgrund der Genauigkeit der mathematischen Beschreibung neue Maßstäbe. „Mit 24 Byte für jede Synapse zwischen den erregenden Nervenzellen lassen sich die biologischen Vorgänge sehr genau abbilden. Man könnte so beispielsweise feststellen, wie sich die Eigenschaften dieser Verbindungen zwischen den Nervenzellen ändern, wenn das Gehirn etwas Neues lernt“, erklärt die Jülicher Neurowissenschaftlerin Prof. Abigail Morrison, die das Projekt gemeinsam mit Diesmann leitet.

Die optimierte Simulationstechnologie wird künftig unter anderem bei der Erforschung der neuronalen Grundlagen der Bewegungssteuerung und den Ursachen der Parkinson-Krankheit am japanischen Forschungsinstitut OIST eingesetzt. „Die Ergebnisse zeigen, dass Anwendungen aus den Neurowissenschaften die Leistung aktueller Petascale-Rechner voll ausschöpfen können. Das Projekt ebnet den Weg, um auf dem K Supercomputer Simulationen der Gehirnaktivität und des Bewegungsapparates zu kombinieren,“ erläutert Prof. Kenji Doya, Leiter der Forschungsgruppe am OIST.

Die Berechnung des neuronalen Netzwerkes wurde mit einer neuen Version der Software NEST durchgeführt, die Wissenschaftler weltweit frei verwenden können und in ihrer Forschung einsetzen. „Bei den Vorbereitungen war besonders der Zugang zu Jülichs Superrechnern JUGENE und seinem Nachfolger JUQUEEN entscheidend, um die Software entwickeln und die Resultate gegenchecken zu können“, berichtet Prof. Shin Ishii, Leiter des Brain und Neural Systems Team. Gemeinsam mit Diesmann hatte er das Projekt 2009 am RIKEN-Institut initiiert. „Seitdem“, fügt Prof. Mitsuhisa Sato vom AICS hinzu, „arbeiteten die Nachwuchswissenschaftler Jun Igarashi, Gen Masumoto, Susanne Kunkel und Moritz Helias daran, die Open Source Software NEST für den K-Supercomputer fit zu machen.

Weitere Informationen:

Gemeinsame Pressemitteilung (engl.) des Forschungszentrums Jülich, der japanischen RIKEN Forschungsinstitute in Wako-shi und Kobe (AICS) und des Okinawa-Instituts für Technologie (OIST): http://www.riken.jp/en/pr/press/2013/20130802_1/

Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6): http://www.fz-juelich.de/inm/inm-6/EN/Home/home_node.html

NEST-Initiative: http://www.nest-initiative.org/index.php/About_Us

Dossier Human Brain Modelling des Forschungszentrums Jülich: http://www.fz-juelich.de/portal/DE/Forschung/Gesundheit/human-brain-modelling/_node.html

Human Brain Project: http://www.humanbrainproject.eu/
Ansprechpartner:
Prof. Markus Diesmann
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6)
Tel. 02461 61-9301
m.diesmann@fz-juelich.de
Prof. Abigail Morrison
Institut für Neurowissenschaften und Medizin, Computational and Systems Neuroscience (INM-6)
Tel. 02461 61-9473
a.morrison@fz-juelich.de
Pressekontakt:
Tobias Schlößer
Unternehmenskommunikation
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften