Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

1,2 Millionen Galaxien in drei Dimensionen

15.07.2016

Mit einer neuen Karte wollen Astronomen den dunklen Seiten des Universums auf die Spur kommen

Was hat es mit der Dunklen Energie auf sich? Welche Eigenschaften besitzt sie? Diese Fragen zählen zu den heißen Themen der Astronomie. Einen wichtigen Beitrag zur Erforschung der geheimnisvollen Kraft liefert jetzt die bisher größte dreidimensionale Karte des Universums: Sie enthält 1,2 Millionen Galaxien in einem Volumen von 650 Milliarden Kubiklichtjahren.


Galaxien wie Sand am Meer: Dies ist ein Schnitt durch die Karte der großräumigen Struktur des Universums aus dem Sloan Digital Sky Survey und seinem Unterprogramm, dem Baryon Oscillation Spectroscopic Survey (BOSS). Jeder Punkt in diesem Bild zeigt die Position einer Galaxie vor sechs Milliarden Jahren. Das Bild umfasst etwa 1/20 des Himmels – einen Ausschnitt des Weltalls, der sechs Milliarden Lichtjahre breit, 4,5 Milliarden Lichtjahre hoch und 500 Millionen Lichtjahre dick ist. Die Farbe ist ein Maß für die Entfernung von der Erde, von gelb für Galaxien auf der uns zugewandten Seite der Scheibe bis zu lila auf der weiter entfernten Seite. Galaxien klumpen, sie zeigen große Haufen und Hohlräume dazwischen. Dies blasenförmige Struktur wurde bereits im ersten Bruchteil einer Sekunde nach dem Urknall angelegt. Das Bild enthält 48.741 Galaxien, etwa drei Prozent des gesamten Katalogs. Graue Flecken sind kleine Regionen ohne Daten.

© Daniel Eisenstein und SDSS-III


Das All in drei Dimensionen: Das Rechteck links zeigt einen Ausschnitt von 1000 Quadrat-Grad am Himmel, der fast 120.000 Galaxien enthält, etwa zehn Prozent des gesamten BOSS-Katalogs. Die spektroskopischen Messungen jeder Galaxie – die Punkte in diesem Ausschnitt – machen aus dem zweidimensionalen Bild eine dreidimensionale Karte, die uns den Blick sieben Milliarden Jahre in die Vergangenheit öffnet. Die helleren Regionen in dieser Karte entsprechen Bereichen des Universums mit mehr Galaxien und damit mehr Dunkler Materie. Die zusätzliche Materie in diesen Regionen erzeugt ein Übermaß an Anziehung, was diese Karte zu einem Test der Einstein’schen Gravitationstheorie macht.

© Jeremy Tinker und SDSS-III

Hunderte Wissenschaftler – darunter auch aus den Max-Planck-Instituten für Astrophysik und für extraterrestrische Physik – haben diese Karte für präzise Messungen der großen Unbekannten genutzt. Die Forscher fanden eine sehr gute Übereinstimmung mit dem kosmologischen Standardmodell und bestätigten, dass die Dunkle Energie mit einer kosmologischen Konstante konsistent ist.

 „Zehn Jahre lang haben wir Messungen von 1,2 Millionen Galaxien über ein Viertel des Himmels hinweg gesammelt, um damit die Struktur des Universums in einem Volumen von 650 Milliarden Kubiklichtjahren zu kartieren“, sagt Jeremy Tinker von der New York University, einer der Leiter des Projekts. Dem Team gehörten Hunderte von Wissenschaftlern aus dem Sloan Digital Sky Survey III (SDSS-III) an.

Die Beobachtungen waren Teil des Baryon Oscillation Spectroscopic Survey (BOSS). Die dabei erstellte Karte ist vom ständigen Tauziehen zwischen der unbekannten Dunklen Materie und der ebenso geheimnisvollen Dunklen Energie geprägt. Sie ermöglicht es den Astronomen, die Ausdehnungsrate des Universums zu vermessen, indem sich die Größe der sogenannten baryonischen akustischen Oszillationen (BAO) in der dimensionalen Verteilung der Galaxien bestimmen lässt.

Denn das sehr junge All war bis zu einem Alter von etwa 400.000 Jahren nach dem Urknall von Schallwellen durchzogen; danach „froren“ diese in der Materieverteilung des Universums „ein“ und hinterließen ein charakteristisches Muster. Als Folge davon sind Galaxien bevorzugt durch einen ganz bestimmten Abstand voneinander getrennt, der als BAO-Skala bezeichnet wird. Die ursprüngliche Größe dieser BAO-Skala ließ sich aus Beobachtungen des kosmischen Mikrowellenhintergrundes sehr genau bestimmen.

Ariel Sanchez vom Max-Planck-Institut für extraterrestrische Physik in Garching leitete die Arbeiten, um den genauen Anteil an Dunkler Materie und Dunkler Energie auf Grundlage der BOSS-Daten abzuschätzen. „Wenn wir die akustische Skala im Lauf der kosmischen Geschichte messen, gibt uns das einen Maßstab an die Hand, mit dem wir direkt die Expansionsrate des Weltalls bestimmten können“, sagt Sanchez. So ließen sich die subtilen Auswirkungen, welche die BAO auf die Verteilung der Galaxien haben, über eine Zeitspanne von zwei bis sieben Milliarden Jahren zurückverfolgen.

Für die sehr genauen Messungen mussten die Daten allerdings auch sorgfältig analysiert werden. Insbesondere stellte die Bestimmung der Entfernungen zu den Galaxien eine große Herausforderung dar. Diese wird aus den Spektren abgeleitet. Dabei ist das Licht der Milchstraßensysteme in den roten Bereich verschoben, weil sie sich von uns entfernen. Diese sogenannte Rotverschiebung hängt unmittelbar mit dem Abstand zusammen: Je weiter eine Galaxie von uns entfernt ist, desto schneller flieht sie vor uns.

„Daneben führen die Galaxien aber auch Eigenbewegungen aus. Und deren Geschwindigkeitskomponente entlang der Sichtlinie bewirkt eine Verzerrung der Rotverschiebungen“, sagt Shun Saito vom Max-Planck-Institut für Astrophysik, der ausgeklügelte Modelle zur BOSS-Datenanalyse lieferte.

Wegen des genannten Effekts ist die Verteilung der Galaxien richtungsabhängig (anisotrop), weil die Sichtlinie jetzt als Richtung im Raum ausgezeichnet ist - nur in dieser Richtung wird eine Entfernung bestimmt und zwar über die Rotverschiebung, die durch die Eigengeschwindigkeit kontaminiert ist. Das daraus resultierende charakteristische Muster erlaubt es den Astronomen, die Eigengeschwindigkeiten der Galaxien zu messen.

Diese Eigengeschwindigkeiten wiederum werden ausschließlich von der Gravitation beeinflusst. In anderen Worten: Die Messung einer solchen Geschwindigkeit erlaubt Rückschlüsse auf die hinter der Gravitation stehende Theorie. „So können wir abschätzen, in welchem Umfang Einsteins allgemeine Relativitätstheorie auch auf kosmologischen Skalen korrekt ist“, sagt Shun Saito. Um die Daten richtig zu interpretieren, entwickelten die Forscher ein verfeinertes Modell, das die Galaxienverteilung beschreibt.

Für seine Doktorarbeit verfolgte ein Wissenschaftler am Max-Planck-Institut für extraterrestrische Physik einen weiteren interessanten Ansatz: Salvador Salazar verwendete bei der Datenanalyse die Winkelpositionen der Galaxien am Himmel anstatt der physischen dreidimensionalen Positionen. „Diese Methode kommt allein mit Beobachtungsgrößen aus“, sagt Salazar. „Wir machen keine vorherigen Annahmen über das kosmologische Modell.“

Die an dem Projekt beteiligten Forschergruppen verwendeten leicht unterschiedliche Modelle und Methoden, um den riesigen BOSS-Datensatz zu analysieren. Die Daten zeigen, dass die Dunkle Energie, welche die kosmische Expansion antreibt, innerhalb eines Fehlers von nur fünf Prozent mit einer kosmologischen Konstante konsistent ist.

Diese von Albert Einstein eingeführte Konstante, Lambda genannt, beschreibt eine Größe, die der Gravitationskraft der Materie entgegenwirkt, d.h. sie wirkt abstoßend. Darüber hinaus stehen alle Ergebnisse mit dem kosmologischen Standardmodell in Einklang, das mit sechs Parametern die Entwicklung des Weltalls seit dem Urknall beschreibt.

Insbesondere zeigt die Karte auch die unverwechselbare Signatur der kohärenten Bewegung von Galaxien hin zu Regionen des Universums mit mehr Materie aufgrund der massebedingten Anziehungskraft. Und: Die beobachtete Menge der einfallenden Materie entspricht genau den Vorhersagen der allgemeinen Relativitätstheorie. Dies stützt die These, dass die Beschleunigung der Expansionsrate durch ein Phänomen wie die Dunkle Energie angetrieben wird und nicht durch eine Änderung der Gravitationstheorie.

HAE/HOR

Kontakt

Dr. Hannelore Hämmerle
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-3980
E-Mail: pr@mpa-garching.mpg
 
Dr. Ariel Sanchez
Max-Planck-Institut für extraterrestrische Physik, Garching
Telefon: +49 89 30000-3776
E-Mail: arielsan@mpe.mpg.de
 
Dr. Shun Saito
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-2225
E-Mail: ssaito@mpa-garching.mpg.de

Dr. Hannelore Hämmerle | Max-Planck-Institut für extraterrestrische Physik, Garching
Weitere Informationen:
http://www.mpe.mpg.de/6611206/news-20160714

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie