Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie viel Saft steckt noch in der Batterie?

28.10.2013
Den Ladezustand von Batterien anzugeben ist schwierig, besonders wenn es in Echtzeit im Volllastbetrieb geschehen soll.

Optimale Versuchsplanung und nichtlineare Batteriemodelle der TU Wien machen das aber möglich. Ein "Batterie-Schnelltester" wird auf der internationalen Fachmesse sps ipc drives ab 26. November in Nürnberg nun erstmals vorgestellt.


Die TU Wien entwickelt Hochleistungs-Batterietester

Dass Batterie-Ladezustandsanzeigen nicht immer besonders zuverlässig sind, erlebt man jeden Tag – etwa beim Handy oder bei der Fotokamera. Bei großen Batterien, bei denen die Belastung zeitlich stark variiert, beispielsweise in Hybrid- oder Elektro-Fahrzeugen, ist dieses Problem noch viel schwerwiegender. Für genaue Ladezustandsanzeigen benötigt man ein mathematisches Modell, mit dem sich das Verhalten der Batterie in möglichst allen Situationen beschreiben lässt. Ein Forschungsteam der TU Wien hat sich darauf spezialisiert, solche Modelle aus wenigen, optimal maßgeschneiderten Versuchsmessungen abzuleiten.

Batterieverhalten messen mit optimalen Testsignalen

„Um das dynamische Verhalten der Batterie modellieren zu können, braucht man zunächst Messungen, die ausreichend Informationen für die Modellbildung zur Verfügung stellen“, erklärt Johannes Unger, der im Forschungsteam von Prof. Stefan Jakubek (Institut für Mechanik und Mechatronik der TU Wien) an diesem Problem forscht. Man gibt einen bestimmten zeitlich veränderlichen Laststrom vor und beobachtet, wie sich die Spannung der Batterie unter dieser Belastung verhält.

„Entscheidend ist, mit minimalem Testaufwand ein Maximum an Information über die Batterie herauszufinden“, sagt Stefan Jakubek. Normalerweise wird das Testergebnis umso genauer, je länger man misst. Doch Zeit ist Geld: Längere Messungen sind teurer und verbrauchen Ressourcen. Bei optimaler Planung der Messung lässt sich auch mit kurzen Testsignalen die nötige Information auslesen.

Datenbasierte Black Box Modelle für minimale Schätzfehler des Ladezustandes

„Die Batterie physikalisch und chemisch vollständig zu beschreiben, wäre ungeheuer aufwändig und schlussendlich nicht für Echtzeitanwendungen geeignet“, sagt Stefan Jakubek. Daher modelliert man die Batterie als Black Box, deren Verhalten von einem rein datenbasierten Modell beschrieben wird. Ausgehend von diesem Modell berechnet man, mit welchem Stromsignal das Verhalten der Batterie am besten angeregt werden kann – und abhängig von diesem Messergebnis kann man daraus wiederum das Modell verbessern. Nach einigen Schritten erhält man dadurch ein sehr gutes Modell der Batterie, das über den gesamten Bereich an Betriebsparametern gültig ist.

„Durch unsere Optimierungsrechnungen ergibt sich ein deutlich dynamischeres Testsignal verglichen zu den bisher verwendeten“, sagt Johannes Unger. „Mit unserem Batterie-Schnelltester für industriell-kommerzielle Anwendungen konnten wir zeigen, dass aus nicht optimierten Testsignalen identifizierte Modelle das hochdynamische Batterieverhalten oft systematisch falsch wiedergeben.“ Dann kann es passieren, dass der Ladezustand der Batterie permanent falsch eingeschätzt wird.

Lösung für moderne Batterie-Management-Systeme

Besonders bei Hochleistungseinsätzen, in denen sich die Beanspruchung der Batterie zeitlich stark ändert, ist die datenbasierte Lösung der TU-Forschungsgruppe äußerst nützlich. Sehr wichtig sind die optimale Versuchsplanung und daraus erhaltene Batteriemodelle auch für das Testen von Gleichstrom-Umrichtern: Sie nehmen elektrische Leistung in Form von einzelnen Pulsen auf, etwa aus einer Batterie, und geben möglichst konstante Gleichspannung weiter, zum Beispiel an einen Elektromotor. Für die Entwicklung solcher Umrichter sind präzise Batteriemodelle unverzichtbar.

Präsentation auf Fachmesse

Auf der Fachmesse sps ipc drives ab 26. November in Nürnberg wird der TU-Batterietester zum ersten Mal öffentlich präsentiert. Die TU Wien wird dort außerdem auch neue, intelligente Antriebssysteme für Elektromotoren und ein Projektmanagement-Tool zur Optimierung von Arbeitsabläufen in Großprojekten vorführen.

Publikationen:

[1] Unger Johannes, Christoph Hametner, Stefan Jakubek and Marcus Quasthoff. "Optimal model based design of experiments applied to high current rate battery cells." In Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), pp. 1-6, 2012.

[2] Hametner Christoph and Stefan Jakubek. "State of charge estimation for Lithium Ion cells: Design of experiments, nonlinear identification and fuzzy observer design." Journal of Power Sources 238, pp. 413-421, 2013.

Rückfragehinweis:
Univ. Prof. Stefan Jakubek
Institut für Mechanik und Mechatronik
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-325510
stefan.jakubek@tuwien.ac.at
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://en.ac.at/dle/pr/aktuelles/downloads/2013/batterie/

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Boden – Grundlage des Lebens / Bodenforscher auf der Internationalen Grünen Woche
16.01.2018 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht EMAG auf der GrindTec 2018: Kleine Bauteile – große Präzision
11.01.2018 | EMAG GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics