Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Smarte Bandagen - Medizintechnik setzt auf organische und gedruckte Elektronik

05.03.2009
Aktuelle Trends und neueste Entwicklungen auf der LOPE-C in Frankfurt

In der Produktion von Einweg-Teststreifen hat sich das Drucken metallischer Elektroden bereits milliardenfach bewährt. Nun suchen die Medizintechnik-Hersteller nach Wegen, die Wundheilung beim Menschen mit Hilfe von organischer und gedruckter Elektronik zu beschleunigen. Aktuelle Trends und neueste Entwicklungen in diesem Bereich werden vom 23. bis 25. Juni 2009 auf der LOPE-C in Frankfurt am Main zu sehen sein.

Bei der Herstellung von Einweg-Teststreifen für die Blutzucker-Messung kommt gedruckte Elektronik jedes Jahr milliardenfach zum Einsatz. Seit die Messung mit Hilfe von Elektroden durchgeführt werden kann, reicht ein winziger Tropfen Blut, um den Zuckergehalt sehr genau zu bestimmen. Dieser Fortschritt erleichtert vor allem Diabetikern den Alltag erheblich.

Jeder Teststreifen besteht aus einem Kunststoffträger, der per Siebdruck mit metallischen Elektroden versehen wird. Die Kunst der Herstellung liegt darin, die metallhaltigen Tinten bei Temperaturen zu trocknen, die den Kunststoff nicht beschädigen. Um die Produkte für die breite Bevölkerung erschwinglich zu machen, greifen die Hersteller auf kostengünstige Siebdruckverfahren zurück. "Neben einem niedrigen Materialverbrauch bieten Druckverfahren vor allem den Vorteil hoher Skalierbarkeit", sagt Jack Kramer, CEO der GSI Technologies LLC in Burr Ridge, Illinois.

Etwa die Hälfte aller weltweit eingesetzten Einweg-Teststreifen für die Blutzuckermessung werden laut Kramer bereits heute per Siebruck gefertigt. Auch bei der Massen-Herstellung von Elektroden für die Messung von Gehirn- (EEG) oder Herzströmen (EKG) spielen Druckverfahren eine bedeutende Rolle. So wird das Gros der Elektroden, die unter einem Pflaster die spezifischen Ströme direkt auf der Hautoberfläche messen, in Form silberhaltiger Tinten mittels Flexo- oder Tief-Druckverfahren auf die Kunststoffträger gebracht.

Gezielter Wechsel des Wundverbands
In Zukunft soll gedruckte Elektronik helfen, den Wechsel von Wundverbänden gezielt zu steuern und dadurch den Heilungsprozess leichter zu kontrollieren. So arbeiten die Fachleute am Holst Centre im niederländischen Eindhoven an der Entwicklung von Sensorfolien, die Lichtquellen und Photosensoren ("Pixel") auf kleiner Fläche kombinieren und den Sauerstoffgehalt im Blut, das die verletzte Hautregion durchfließt, messen können. Dies geschieht mit Hilfe von Licht-Reflexionen auf und in der menschlichen Haut. "Eingebettet in den Wundverband können diese Folien wichtige Informationen über den Heilungsprozess liefern", beschreibt Geschäftsführer Jaap Lombaers den Nutzen dieser Technik. "Die Ärzte sind dadurch viel besser in der Lage, den Zeitpunkt, wann ein Verband gewechselt werden muss, zu bestimmen und dadurch den Heilungsprozess zu beschleunigen."

Da die konventionelle Siliziumtechnik für diese flächige Anwendung allerdings zu kostspielig ist, greifen die Forscher bei der Entwicklung der "Smarten Bandagen" auf die organische und gedruckte Elektronik zurück. Sie erlaubt es, Elektronik auf leichten und flexiblen Trägerfolien zu fertigen, die mit Kunststoffen, so genannten "Polymeren", bedruckt werden. Da sich Polymere in Flüssigkeiten lösen und in Abhängigkeit von ihrer chemischen Zusammensetzung isolierende, halbleitende oder leitende Eigenschaften bieten, eignen sie sich dazu, elektronische Bauelemente wie z.B. RFID-Transponder, Leuchtdioden oder eben Photosensoren in kontinuierlichen Druckprozessen äußerst preiswert herzustellen. (-> Hintergrundinformationen). Die Pixel sind etwa zwei mal zwei Millimeter groß. "Aktuelle Demonstrationsmodelle bieten Platz für Arrays von maximal 100 Pixeln", beschreibt Lombaers den Stand der Technik. "Grundsätzlich sind aber auch größere Folien mit mehr Pixeln möglich." In wenigen Jahren soll die Technik zur Marktreife gelangen.

Dann werden sie vielleicht sogar mit weiteren Zusatzfunktionen versehen. So ließe sich eine Antenne in die Smarten Bandagen integrieren, die wichtige Meldungen direkt an den behandelnden Arzt funkt. Der Arzt könnte dann den Patienten sehr zielgerichtet in seine Praxis laden, wodurch sich die Behandlung auch vom zeitlichen Aufwand her für beide Seiten optimieren ließe.

LOPE-C zeigt Trends und Technologien
Weitere Trends zum Thema "Organische und gedruckte Elektronik" werden auf der LOPE-C Large-area, Organic & Printed Electronics Convention zu sehen sein, die als Konferenz mit begleitender Ausstellung vom 23. bis 25. Juni 2009 im Congress Center der Messe Frankfurt am Main stattfindet.

Auf Einladung der OE-A (Organic Electronics Association), einer Arbeitsgemeinschaft im VDMA, treffen sich bei dieser Weltpremiere Experten aus Wirtschaft und Wissenschaft, um sich über die Chancen, Produkte und Entwicklungen in der organischen und gedruckten Elektronik auszutauschen.

Hintergrund: Organische und gedruckte Elektronik
Die organische und gedruckte Elektronik eröffnet ein völlig neues Anwendungsspektrum neben der Siliziumtechnik, da sie die kostengünstige Herstellung dünner, leichter und flexibler Bauelemente ermöglicht.
Sie basiert auf einer Kombination von
* Techniken, die eine großflächige, hochvolumige Beschichtung und Strukturierung erlauben, und von

* Kunststoffmolekülen, die auf eine leichte und biegsame Trägerfolie geschichtet werden und in Abhängigkeit von ihrer chemischen Zusammensetzung isolierende, halbleitende oder leitende Eigenschaften aufweisen. Meist sind diese Materialien organischer, manchmal anorganischer Natur.

Die Kunststoffe können aus großen Molekülketten ("Polymeren") oder "kleinen" Molekülen bestehen. In der Art und Weise, wie sie im Herstellungsprozess der elektrischen Bauteile verarbeitet werden, weisen sie allerdings Unterschiede auf. Kleine Moleküle werden in der Regel in einem Vakuumprozess aufgedampft. Polymere dagegen werden in Massendruck-Verfahren aufgebracht, da sie sich in Flüssigkeiten lösen lassen und es erlauben, elektronische Bauteile Schicht für Schicht, sehr preiswert aufzubauen.

Die organische und gedruckte Elektronik eignet sich damit zum Beispiel zum Bau von
* Gedruckten Transistoren, die als Radio Frequency Identification (RFID)-Etiketten in der Warenlogistik zum Einsatz kommen
* Organischen Leuchtdioden (OLED), die Licht aussenden
* Organischen Photovoltaikzellen, die Licht absorbieren und in elektrische Energie umwandeln
* Flexiblen Batterien, um mobile Geräte mit Strom zu versorgen
* Gedruckten Sensoren, die Umweltparameter wie Helligkeit, Druck, Temperatur oder Feuchtigkeit messen
* Organischen Datenspeichern, die digitale Informationen speichern
* Flexiblen Displays für elektronische Bücher oder SmartCards
* Gedruckten Einweg-Messgeräten für die medizinische Diagnostik und weiteren innovativen Elektronikanwendungen
Sollten Sie weitere Fragen zu den Themen "Organische und gedruckte Elektronik" oder "LOPE-C" haben, dann richten Sie Ihre redaktionelle Anfrage bitte an:
Hartmut Kowsky-Kawelke
Tel.: +49 (0) 208 62 50 796
E-Mail: press@lope-c.com
E-Mail: kowsky-kawelke@agentursieben.de

Barbara Kaelberer | pressetext.deutschland
Weitere Informationen:
http://www.lope-c.com

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht »Lasertechnik Live« auf dem International Laser Technology Congress AKL’18 in Aachen
23.02.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Empa zeigt «Tankstelle der Zukunft»
23.02.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics