Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schadstoffe im Wasser einfach binden

24.03.2015

Neuartige Membranadsorber entfernen nicht nur unerwünschte Partikel aus Wasser, sondern gleichzeitig auch gelöste Substanzen wie das hormonell wirkende Bisphenol A oder giftiges Blei. Hierzu betten Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB selektive Adsorberpartikel in Filtrationsmembranen ein. Vom 24. bis 27. März 2015 präsentiert das IGB die Membranadsorber und weitere innovative Technologien zur Wasserbehandlung auf der Messe Wasser Berlin International in Halle 2.2, Stand 422.

Erst im Januar 2015 hat die europäische Lebensmittelbehörde EFSA den Grenzwert für Bisphenol A in Verpackungen gesenkt. Die hormonell wirksame Massenchemikalie ist unter anderem ein Ausgangsstoff für Polycarbonate, aus denen beispielsweise CDs, Plastikgeschirr oder Brillengläser hergestellt werden. Aufgrund seiner chemischen Struktur wird Bisphenol A in den biologischen Stufen der Kläranlagen nicht vollständig abgebaut und gelangt so über den Ablauf der Kläranlage in Flüsse und Seen.


In der porösen Trägerstruktur der Membranadsorber sind winzige Polymerpartikel eingebettet, die Schadstoffe aus dem Wasser binden.

Fraunhofer IGB

Um Chemikalien, Antibiotika oder Schwermetalle aus Ab- oder Prozesswasser zu entfernen, werden bereits Aktivkohle oder andere Adsorbermaterialien eingesetzt. Ein Nachteil dieser hochporösen Materialien ist jedoch die lange Kontaktzeit, die nötig ist, damit die Schadstoffe in das Poreninnere diffundieren können. Damit auch in kürzerer Zeit möglichst alle Schadstoffe abgefangen werden, setzen die Kläranlagen daher größere Adsorbermengen ein, in entsprechend großen Behandlungsbecken. Aktivkohle kann allerdings nur unter hohem Energieeinsatz regeneriert werden, sodass zumeist große Mengen schadstoffbeladenen Materials entsorgt werden müssen.

Auch die Membranfiltration mit Nanofiltrations- oder Umkehrosmosemembranen, die prinzipiell solche Schadstoffe entfernen können, ist für die Entfernung gelöster Moleküle aus großen Volumenströmen wie Prozess- oder Abwasser noch nicht wirtschaftlich. Membranen filtern das Wasser durch ihre Poren, wenn auf einer Seite der Membran ein Druck aufgebaut wird und halten dabei größere Moleküle und Feststoffpartikel zurück. Je kleiner die Membranporen aber sind, desto größeren Druck – und damit desto mehr Energie – muss man aufwenden, um die Wasserinhaltsstoffe abzutrennen.

Membranadsorber – Filtern und Binden in einem Schritt

Einen neuen Ansatz, der die Vorteile beider Verfahren kombiniert, haben Wissenschaftler am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart gewählt: Bei der Herstellung der Membranen fügen sie kleine, polymere Adsorberpartikel hinzu. Die entstehenden Membranadsorber können zusätzlich zu ihrer Filtrationsfunktion in Wasser gelöste Stoffe adsorptiv binden. »Wir nutzen die unter der Trennschicht der Membran liegende poröse Struktur. Die Poren bieten nicht nur eine sehr hohe spezifische Oberfläche, um möglichst viele Partikel einbetten zu können, sondern sind auch optimal zugänglich«, erklärt Dr. Thomas Schiestel, Leiter der Arbeitsgruppe »Anorganische Grenzflächen und Membranen« am Fraunhofer IGB.

»Da die Schadstoffe bei unseren Membranadsorbern anders als bei herkömmlichen Adsorbern konvektiv, das heißt mit dem schnell durch die Membranporen strömenden Wasser transportiert werden, reicht eine nur Sekunden dauernde Kontaktzeit aus, um Schadstoffe auf der Partikeloberfläche zu adsorbieren«, so der Experte. Bis zu 40 Prozent des Gewichts der Membranadsorber geht auf die Partikel zurück, entsprechend hoch ist ihre Bindekapazität. Gleichzeitig können die Membranadsorber bei niedrigen Drücken betrieben werden. Da die Membranen sehr eng gepackt werden können, lassen sich schon mit kleinen Anlagen sehr große Volumina behandeln.

Funktionelle Adsorberpartikel

Die Adsorberpartikel selbst stellen die Forscher in einem einstufigen, kosteneffizienten Verfahren her. In dem patentierten Prozess werden Monomer-Bausteine mithilfe eines Vernetzers zu 50 bis 500 Nanometer kleinen Polymerkügelchen polymerisiert. »Je nachdem, welche Stoffe aus dem Wasser entfernt werden sollen, wählen wir aus einer Reihe unterschiedlicher Monomere, die sich in ihren funktionellen Gruppen unterscheiden, das jeweils passende aus«, so Schiestel. Die Bandbreite reicht dabei von eher hy-drophobem Pyridin, über kationische Ammoniumverbindungen bis hin zu anionischen Phosphonaten.

Selektive Entfernung von Schadstoffen und Metallen

In verschiedenen Tests konnten die Forscher zeigen, dass die Membranadsorber durch die für den jeweiligen Schadstoff maßgeschneiderten Partikel Schadstoffe sehr selektiv entfernen. So binden Membranadsorber mit Pyridin-Gruppen das hydrophobe Bis-phenol A besonders gut, während solche mit Aminogruppen das negativ geladene Salz des Antibiotikums Penicillin G adsorbieren.

»Die verschiedenen Adsorberpartikel lassen sich sogar in einer Membran kombinieren. Auf diese Weise können wir mehrere Mikroschadstoffe gleichzeitig mit nur einem Membranadsorber entfernen«, weist Schiestel auf weitere Vorzüge hin. Mit anderen funktionellen Gruppen bestückt, können die Membranadsorber auch toxische Schwermetalle wie Blei oder Arsen aus dem Wasser entfernen. Phosphonat-Membranadsorber etwa adsorbieren mehr als 5 Gramm Blei pro Quadratmeter Membranfläche – 40 Prozent mehr als ein kommerziell erhältlicher Membranadsorber.

Wirtschaftlich und regenerierbar

Damit die Membranadsorber mehrfach verwendet werden können, müssen die adsorbierten Schadstoffe wieder von den Partikeln in der Membran gelöst werden. »Mem-branadsorber für Bisphenol A lassen sich durch eine Verschiebung des pH-Werts vollständig regenerieren«, erläutert Schiestel. Die konzentrierten Schadstoffe können dann wirtschaftlich entsorgt oder mit geeigneten oxidativen Verfahren abgebaut werden.

Die Regenerierbarkeit der Membranadsorber eröffnet zudem eine weitere Anwendung: Die abgetrennten Moleküle wiederzuverwerten. Das macht die Technologie auch für die Rückgewinnung wertvoller Edelmetalle oder Seltene-Erden-Metalle interessant. Das Fraunhofer IGB präsentiert die Membranadsorber und weitere innovative Technologien zur Wasserreinigung auf der Messe Wasser Berlin International vom 24. bis 27. März 2015 in Berlin am Fraunhofer-Stand in Halle 2.2, Stand 422.

Originalliteratur
K. Niedergall, M. Bach, T. Hirth, G.E.M. Tovar, T. Schiestel (2014) Removal of micropollutants from water by nanocomposite membrane adsorbers, Sep. Purif. Technol. 131: 60-68
K. Niedergall, M. Bach, T. Schiestel, G.E.M. Tovar (2013) Nanostructured composite adsorber membranes for the reduction of trace substances in water: the example of bisphenol A, Industrial Chemical Research ACS Special Issue: Recent Advances in Nanotechnology-based Water Purification Methods, Ind. Eng. Chem. Res. 52/39 14011, DOI: 10.1021/ie303264r

Weitere Informationen:

http://www.igb.fraunhofer.de/de/presse-medien/presseinformationen/2015/schadstof...

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Biophotonische Innovationen auf der LASER World of PHOTONICS 2017
26.06.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten
26.06.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie