Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Prozessüberwachung: Neuer bidirektionaler Sensor » bd-1 « misst Form und Rauheit von Wellen inline

28.04.2014

Das Fraunhofer-Institut für Lasertechnik ILT hat einen interferometrischen Abstandssensor entwickelt, der geometrische Eigenschaften von Wellen, zum Beispiel Nocken- oder Kurbelwellen, mit Sub-Mikrometer-Genauigkeit absolut messen kann. Der kompakte Sensorkopf » bd-1 « lässt sich problemlos in Wellen-Messmaschinen integrieren und erfasst neben geometrischen Merkmalen auch die Oberflächenrauheit. Auf der Control 2014 in Stuttgart führen unsere Experten den Sensor live vor.

In allen Verbrennungsmotoren kommen Kurbelwellen, Antriebswellen und Nockenwellen zum Einsatz. Die Automobilindustrie hat höchste Ansprüche an die Fertigungsgenauigkeit und Oberflächeneigenschaften dieser Wellen.


Form und Rauheitsmessung an einer Nockenwelle mit dem Sensor » bd-1 «.

Fraunhofer ILT, Aachen

Nockenwellen steuern beispielsweise mit Mikrosekundengenauigkeit den Zeitpunkt der Ventilöffnung, die synchron zur Kolbenbewegung erfolgen muss. Bereits kleinste Fertigungsfehler können die Leistung des Motors, den Kraftstoffverbrauch und die Lebensdauer der Bauteile entscheidend beeinflussen.

So können etwa Rundheitsabweichungen oder von der Vorgabe abweichende Rauheitswerte zu erhöhtem Verschleiß, unerwünschter Geräuschentwicklung und Fehlfunktionen führen. Daher werden Wellen in der Fertigungslinie einer 100-Prozent-Prüfung unterzogen, wobei die Anforderungen an die Genauigkeit der Messtechnik zehn Mal höher sind als jene an die Genauigkeit der Fertigungstechnik.

Bei der Vermessung der Form- und Lageabweichungen muss die Messgenauigkeit im Mikrometerbereich, manchmal sogar im Bereich einiger hundert Nanometer liegen.

Derzeit setzen Wellen-Messmaschinen noch überwiegend taktile Abstandssensoren und Laser-Triangulationssensoren ein, die verschiedene Merkmale wie Nockenform, Nockenhub, Grundkreisradius, Rundheit, Exzentrizität, Winkellage und Geradheit der Lagerstellen messen. Die Oberflächenrauheit wird meist separat mit Perthometern erfasst.

» bd-1 « überwindet bisherige Grenzen der Messtechnik

Am Fraunhofer ILT haben Experten nun den bidirektionalen optischen Sensor » bd-1 « entwickelt, der sowohl die Form als auch die Rauheit von Wellen inline messen kann. Er benötigt nur einen Bruchteil des Bauraumes, der von Triangulationssensoren beansprucht wird. Sein Name geht auf den Begriff »bidirektional« zurück und bedeutet, dass der Laserstrahl auf ein und demselben Weg hin- und zurückläuft. Dadurch entfallen Justierprobleme, Sender und Empfänger müssen nicht mehr aufeinander ausgerichtet werden. Im direkten Vergleich mit herkömmlichen Triangulationssensoren hat »bd-1« einen wesentlich geringeren Linearitätsfehler und lässt damit seine Konkurrenz weit hinter sich.

» bd-1 « kann alle Arten von Oberflächen messen, auch feingeschliffene, glänzende und spiegelnde Oberflächen, deren Erfassung mit anderen optischen Sensoren problematisch ist. Auch steile Flanken oder Bohrungen mit hohem Aspektverhältnis sind mit » bd-1 « erfassbar. Darüber hinaus wird während der Messung von Formabweichungen an drehenden Wellen zusätzlich die Oberflächenrauheit erfasst, wodurch zusätzliche Prozessschritte zur Vermessung mit Rauheitsmessgeräten entfallen.

Präzise und schnelle Inline-Messung zur Qualitätsprüfung und Prozessüberwachung

» bd-1 « erkennt Formabweichungen und die mikroskopische Oberflächenstruktur der Welle bei Drehzahlen von mehreren tausend Umdrehungen pro Minute mit einer Genauigkeit im 100-nm-Bereich. Dies wird durch eine schnelle Datenaufnahme und -verarbeitung ermöglicht, wobei die Messfrequenz für einzelne Abstandsmessungen bis zu 70 kHz beträgt. Damit erreicht » bd-1 « die Präzision interferometrischer Sensoren, und ist schneller als herkömmliche, absolut messende Abstandssensoren. » bd-1 « kann sowohl zur Qualitätsprüfung in der Fertigungslinie als auch zur Prozessüberwachung während der Fertigung eingesetzt werden.

Auch in rauen Umgebungen arbeitet der Sensor zuverlässig. Das Fenster für den Stahlaus- und Strahleintritt hat einen Durchmesser < 5 mm und kann daher effizient durch einen Luftstrom vor Verschmutzungen geschützt werden.

Flexible Einsatzgebiete

Die Entwickler des Fraunhofer ILT haben den Abstandssensor primär für Hersteller von Wellen oder von Hochpräzisions-Zylinderkoordinaten-Messmaschinen (CCMM) für beispielsweise Nocken- oder Kurbelwellen entwickelt. » bd-1 « ist optimal geeignet für eine 100-Prozent-Inline-Prüfung geometrischer Merkmale entsprechend den Anforderungen der Automobilindustrie. In Feldversuchen hat sich » bd-1 « bereits bei Aufgabenstellungen wie der Dickenmessung an Walzbändern und Blasfolienanlagen sowie bei Rundheits- und Abstandsmessungen während der Fertigung von Drehteilen in Werkzeugmaschinen bewährt.

Auf der Internationalen Fachmesse für Qualitätssicherung, Control, vom 6. bis zum 9. Mai 2014 in Stuttgart können interessierte Besucher Live-Messungen mit » bd-1 « auf dem Fraunhofer-Gemeinschaftsstand 1/1502 erleben.

Ansprechpartner

Dipl.-Phys. Christian Tulea
Gruppe Klinische Diagnostik und mikrochirurgische Systeme
Telefon +49 241 8906-431
christian.tulea@ilt.fraunhofer.de

PD Dr. Reinhard Noll
Leiter des Kompetenzfeldes Messtechnik und EUV-Strahlquellen
Telefon +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Boden – Grundlage des Lebens / Bodenforscher auf der Internationalen Grünen Woche
16.01.2018 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht EMAG auf der GrindTec 2018: Kleine Bauteile – große Präzision
11.01.2018 | EMAG GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics