Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenbewegung Pate für kinetische Fassade

14.05.2012
Entwicklung der Uni Stuttgart auf der EXPO 2012 in Yeosu, Südkorea
Auf der diesjährigen Weltausstellung in Südkorea (EXPO 2012 Yeosu) präsentiert sich der Themenpavillon „One Ocean“ mit einer hochinnovativen kinetischen Fassade. Deren Funktionsweise als adaptives Verschattungssystem und Medienfassade wurde durch ein bionisches Forschungsprojekt am Institut für Tragkonstruktionen und Konstruktives Entwerfen der Universität Stuttgart (ITKE) angeregt.

„Innovationen entstehen häufig in Teamarbeit, besonders vielversprechend wird es, wenn dabei verschiedene Disziplinen zusammentreffen“, so Prof. Jan Knippers, der das Projekt „Biegsame Flächentragwerke“ im Rahmen der Fördermaßnahme BIONA leitet. BIONA steht für „Bionische Innovationen für nachhaltige Produkte und Technologien“ und wird vom Bundesministerium für Bildung und Forschung gefördert. Seit drei Jahren beschäftigen sich im Rahmen dieses Projekts Ingenieure und Architekten in Zusammenarbeit mit Verfahrenstechnikern des Instituts für Textil- und Verfahrenstechnik Denkendorf und Biologen der Plant Biomechanics Group an der Universität Freiburg mit der Frage, inwieweit sich biologische Bewegungsmechanismen technisch umsetzen lassen.
Die biologischen Vorbilder sollen dabei vor allem Hinweise geben, wie bewegliche Konstruktionen hinsichtlich Störungsanfälligkeit sowie Energie- und Materialeffizienz verbessert werden können. Erstes Zwischenergebnis war dabei die Erkenntnis, dass viele Pflanzenbewegungen ohne diskrete Gelenke auskommen und stattdessen auf elastische Verformungen beruhen. Als Vorbild für die Verschattung von Fassaden wurde die Paradiesvogelblume Strelitzie näher untersucht. Deren pfeilförmig ausgebildeten blauen Kronblätter öffnen sich, wenn sich ein Nektarvogel auf sie setzt, und zwar durch Verbiegen, ganz ohne Gelenke oder Schrauben. Nutzt man dieses Bewegungsprinzip, so entstehen Konstruktionen, bei denen Form und Bewegung durch die reversible Elastizität ihrer Komponenten bedingt sind und es zudem keine verschleißanfälligen Elemente gibt.

Materialversagen führt zum Erfolg
Im klassischen Ingenieurverständnis handelt es sich bei diesem Ansatz von beweglichen Konstruktionen eigentlich um eine Versagensform, bei der sich ein Bauteil unter zu großer Last verbiegt. Aber gerade dieses Prinzip führt hier zum Erfolg. Die Wissenschaftler untersuchten verschiedene Materialien und Mechanismen. So entstand der Prototyp einer adaptiven Fassadenverschattung mit dem elastischen Verformungsmechanismus Flectofin®, der prototypisch in einer adaptiven Fassadenverschattung umgesetzt wurde. Dieses System ermöglicht beispielsweise stufenlose Öffnungswinkel zwischen -90° und +90°, wodurch von einer nur geringfügigen Fassadenbedeckung bis hin zur kompletten Abdeckung alle Zwischenstufen möglich sind.

Der Klappenmechanismus in der Blüte der Strelitzia reginae (Paradiesvogelblume).
(Foto: Simon Schleicher)


Der Themenpavillon „One Ocean“ mit der hochinnovativen kinetischen Fassade, deren Funktionsweise durch ein bionisches Forschungsprojekt am Institut für Tragkonstruktionen und Konstruktives Entwerfen der Universität Stuttgart (ITKE) angeregt wurde. (Foto: soma architecture)

Hierbei ist sie nicht nur auf planare Fassadenabschnitte beschränkt, auch einfach- und doppeltgekrümmte Oberflächen, wie sie in der zeitgenössischen Architektur immer häufiger vorkommen, lassen sich durch die geometrische Anpassungsfähigkeit und den Verzicht auf starre Rotationsachsen eindecken. Damit eröffnen sich für die Flectofin®-Lamelle Anwendungsfelder, die mit konventionellen Verschattungssystemen nicht oder nur mit sehr großem Aufwand möglich sind.

Auf der Suche nach einem derartigen Verschattungssystem wandte sich das Wiener Architekturbüro soma, das 2009 den Wettbewerb für den Themenpavillon „One Ocean“ auf der Expo gewonnen hatte, an das Büro Knippers Helbig Advanced Engineering Stuttgart. Gemeinsam wurde ein Lamellensystem aus glasfaserverstärktem Kunststoff entwickelt, dessen Bewegung auf einer elastischen, graduell adaptierbaren Verformung beruht. Dass sich solche Prinzipien in die Größenmaßstäbe der Architektur übertragen lassen und dabei durch ihre Ästhetik und Einfachheit verblüffen, können Besucher der EXPO in Yeosu, Südkorea ab Mai 2012 bewundern.

Weitere Informationen: Prof. Jan Knippers, Institut für Tragkonstruktionen und Konstruktives Entwerfen, Tel. 0711/685-82754,

e-mail: j.knippers@itke.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht OLED auf hauchdünnem Edelstahl
21.09.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Die Chancen der Digitalisierung für das Betriebliche Gesundheitsmanagement: vitaliberty auf der Zukunft Personal 2017
19.09.2017 | vitaliberty GmbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie