Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partikeltechnologie: FAU zeigt Flagge auf der Fachmesse POWTECH in Nürnberg

18.04.2013
Ganz kleine Dinge sind vom 23. bis 25. April 2013 das ganz große Thema im Messezentrum Nürnberg: Die POWTECH, eine der weltweit führenden Fachmessen für mechanische Verfahrenstechnik, und die PARTEC, einer der größten internationalen wissenschaftlichen Kongresse zum Thema Partikeltechnologie finden parallel unter einem Dach statt; hier treffen sich Forschung und Industrie.

Die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) präsentiert ihre jüngsten Entwicklungen und Forschungsergebnisse aus den Bereichen Partikeltechnologie, Katalyse sowie Reaktordesign auf einem eigenen Stand auf der POWTECH und in über 30 wissenschaftlichen Vorträgen und Postern auf der PARTEC.


Zinkoxidnanopartikel mit maßgeschneiderten Morphologien für Elektronik und UV-Schutz
Bild: FAU

Die wirtschaftliche Bedeutung von Partikelsystemen ist riesig: Allein in der chemischen Industrie werden rund zwei Drittel aller Produkte in partikulärer Form verkauft, mehr als 80 Prozent aller Produkte kommen während ihrer Herstellung in Kontakt mit Partikeln. Die meisten Zukunftstechnologien beruhen auf innovativen Materialsystemen: Hochleistungsfähige Solarzellen, Batterien oder Handys sind ohne Partikeltechnologie nicht mehr denkbar und produzierbar.

Nanostrukturen werden heute in vielfältigen Anwendungsgebieten genutzt, beispielsweise im Leichtbau, in der Energietechnik, aber auch in der Medizin und in der Kosmetik. Sie tragen dazu bei, umweltverträglicher, energiesparender oder ressourcenschonender zu produzieren. Materialien verändern in Nanogröße ihre Eigenschaften. Sie haben in dieser Dimension andere Farben, Schmelzpunkte oder elektrische Leitfähigkeiten und bieten einzigartige neue Gestaltungsmöglichkeiten.

Geballte Kompetenz der FAU auf der Powtech

Auf der POWTECH in Nürnberg zeigt die FAU in Halle 5, Stand 103, welch einmalige Dichte an herausragender Forschungskompetenz in der Partikeltechnologie in Erlangen in den vergangenen Jahren entstanden ist. Als methodisch orientierte Querschnittsdisziplin arbeitet sie in einem einzigartigen interdisziplinären Ansatz mit den Fachrichtungen der Anwendungsbereiche Optik, Elektronik, Katalyse, Leichtbau und den Lebenswissenschaften eng zusammen.

Am Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik (LFG) steht die Erzeugung, Formulierung und Charakterisierung von Partikeln im Mittelpunkt. Zwei Wege führen zu Partikeln im Nanokosmos: Entweder verkleinert man sie bis zur gewünschten Größe (top down) oder man baut sie durch chemische Reaktionen aus einzelnen Atomen oder Verbindungen auf (bottom up). Mit modernsten Verfahren der Partikelsynthese in der flüssigen Phase und der Gasphase sowie mit Methoden des Zerkleinerns, des Versprühens und des Emulgierens werden Partikelsysteme definiert hergestellt. Wesentlich ist, dass die Eigenschaften letztlich von der Größe, Form, Struktur und Oberfläche der Partikel abhängen.

Ihre gezielte Herstellung sowie die Prozess- und Produktoptimierung wird immer auch durch Verfahren der Modellbildung und Simulation unterstützt und begleitet. Ein wichtiger Trend geht zu immer feineren Partikelgrößen. Partikel mit Größen im Bereich unterhalb von 10 µm und im Nanometerbereich weisen sehr hohe Oberflächen auf, d.h. sie sind grenzflächenbestimmt. Einen besonderen Schwerpunkt stellt daher die Steuerung von Oberflächeneigenschaften durch chemische Funktionalisierung in Flüssigkeiten oder durch Beschichten in der Gasphase (z.B. Atomic Layer Deposition) dar. Partikelwechselwirkungen werden dafür auch mit modernsten Methoden physikalisch und chemisch charakterisiert, darunter auch durch die besonders grenzflächensensitive nichtlineare Spektroskopie oder die Rastersondenmikroskopie.

Das interdisziplinäre Arbeiten in Prozessketten „Vom Molekül/Partikel zum Material“ steht im Fokus des Exzellenzclusters Engineering of Advanced Materials (EAM). Seine Forschung zielt darauf ab, Partikel mit definierten Größen, Formen und Oberflächeneigenschaften zu erzeugen, die dann zu funktionalen Strukturen mit ganz spezifischen Eigenschaften zusammengebaut werden. Am Ende dieser Prozessketten im EAM stehen elektronische Bauelemente wie Feldeffekttransistoren, Leuchtdioden oder Solarzellen. Außerdem können so auch optische Metamaterialien erzeugt werden – also Materialien mit völlig neuen optischen Eigenschaften – sowie Katalysatoren mit besonderer Selektivität oder so genannte Leichtbaustrukturen: zellulare Strukturen aus Metallen, die als sehr leichte, aber mechanisch hochbelastbare Strukturkomponenten etwa im Automobilsektor, als medizinische Implantate oder auch als Gerüst für Katalysatoren eingesetzt werden. Dafür arbeiten Wissenschaftlerinnen und Wissenschaftler aus acht Disziplinen der FAU (Chemie- und Bioingenieurwesen, Chemie, Elektrotechnik, Informatik, Maschinenbau, angewandte Mathematik, Physik und Werkstoffwissenschaften) eng mit Partnern wie den Erlanger Fraunhofer Instituten IIS und IISB sowie der Industrie zusammen.

Maßgeschneiderte Moleküle und Partikelsysteme für die Katalyse
Am Lehrstuhl für Chemische Reaktionstechnik (CRT) stehen Ionische Flüssigkeiten (IL) im Vordergrund. Diese bestehen ausschließlich aus Ionen, besitzen einen sehr niedrigen Dampfdruck und sind bei Raumtemperatur flüssig. Ihre Eigenschaften lassen sich für ein breites Anwendungsspektrum maßschneidern – etwa als Bestandteil von Schmierstoffen für Windräder oder in Verbrennungsmotoren. Eine wichtige Rolle spielen sie auch in der Katalyse, z.B. in der sogenannten SILP (supported ionic liquid phase)-Technologie, bei der Ionische Flüssigkeiten auf poröse Trägermaterialien immobilisiert werden. Durch Einbringen eines Katalysators in der IL können die Vorteile von heterogener und homogener Katalyse (molekulares Katalysatordesign, leichte Produktabtrennung) kombiniert werden. So können Katalysatoren entwickelt werden, die eine möglichst große Wirkung bei einem möglichst geringen Materialeinsatz erzielen.

Poröse Materialien für neue Reaktorsysteme

Die Chemische Reaktionstechnik zeigt außerdem Reaktorsysteme, die geometrisch komplex aufgebaut und gleichzeitig mechanisch, thermisch und korrosiv hochbelastbar sind. Als Grundstrukturen dieser Reaktoren dienen poröse metallische Bauteile, die durch selektives Elektronenstrahlschmelzen, einer speziellen Methode der additiven Fertigung, erzeugt werden. In diesem Verfahren kann nahezu jede dreidimensionale Form inklusive Reaktoreinbauten (z.B. interne Zellstruktur, Kühlschleifen) in nur einem Fertigungsschritt realisiert und danach die Oberfläche mit katalytisch aktiven Materialien beschichtet werden. So entstehen neuartige Katalysatorstrukturen oder Mikroreaktorelemente, die in dieser Form einmalig sind. Diese Technologie wird derzeit im Projekt „Neue Materialien und Fertigungsprozesse für Komponenten in der Verfahrenstechnik – VerTec“ in Fürth etabliert und soll idealerweise bald in Pilotprojekten mit der Industrie eingesetzt werden.
Besuchen Sie uns auf der POWTECH, Halle 5, Stand 103.

Informationen für die Medien:
Prof. Dr. Wolfgang Peukert
Tel. 09131 / 85-29400
wolfgang.peukert@fau.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.fau.de

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Effizienz steigern, Kosten senken!
17.08.2017 | Rittal GmbH & Co. KG

nachricht Maßgeschneiderte Lösungen für APos-Maschinen: Kamerasystem Keyence CV-X100
11.08.2017 | Heun Funkenerosion GmbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ein Feuerwerk der chemischen Forschung

24.08.2017 | Veranstaltungen

US-Spitzenforschung aus erster Hand: Karl Deisseroth spricht beim Neurologiekongress in Leipzig

24.08.2017 | Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eisberge: Mathematisches Modell berechnet Abbruch von Schelfeis

24.08.2017 | Geowissenschaften

Besseres Monitoring der Korallenriffe mit dem HyperDiver

24.08.2017 | Geowissenschaften

Rauch von kanadischen Waldbränden bis nach Europa transportiert

24.08.2017 | Geowissenschaften