Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MEDICA 2013: Brustkrebs – Kombinierte Bildgebung für schnellere und schonendere Biopsien

29.10.2013
Die Entnahme von Gewebeproben ist für Brustkrebs-Patientinnen psychisch oftmals belastend. Auch geht die Prozedur bei Einsatz der MR-Tomographie mit hohen Kosten einher.

An einer schonenden, kostengünstigen Methode zur Gewebeentnahme arbeiten Fraunhofer-Forscher im Projekt MARIUS. Erste alternative Technologien und Verfahren, die MR mit Ultraschall kombinieren, präsentieren sie vom 20. bis 23. November auf der MEDICA 2013 in Düsseldorf (Halle 10, Stand F05).


MR-kompatible Ultraschall- Forschungsplattform für multimodale Bildgebung und Kombination der Vorteile einer MR-Bildgebung und der Ultraschall-Bildgebung zur ultraschallgestützten Bewegungserfassung von inneren Organen während der Bildgebung im MRT.
© Fraunhofer IBMT

Ist ein Brusttumor bösartig oder nicht? Diese Frage lässt sich nicht allein mit den Aufnahmen von Ultraschall- und Röntgengeräten sowie Magnetresonanz-Scannern klären. Deshalb entnehmen Mediziner mit feinen Nadeln Gewebeproben von der verdächtigen Stelle und untersuchen sie im Detail. In vielen Fällen erfolgt diese Biopsie unter Ultraschallkontrolle: Während der Arzt mit der Nadel ins Gewebe sticht, sieht er auf dem Bildschirm, wie die Nadel positioniert werden muss.

Das Problem: Etwa 30 Prozent aller Tumoren sind per Ultraschall nicht zu erkennen. Um die Nadel zielsicher im Gewebe zu führen, kommt daher in einigen dieser Fälle der Magnetresonanz-Tomograph (MRT) zum Einsatz. Das Prinzip: Bildaufnahme innerhalb und Einstechen sowie Voranschieben der Biopsienadel außerhalb des MRT-Tomographen müssen nacheinander durchführt werden. Bis das Gewebe entnommen ist, muss diese Prozedur oft mehrfach wiederholt werden – für die Patientin eine Belastung. Außerdem ist das Verfahren kostspielig, da der MR-Scanner für längere Zeit belegt ist.

In dem Gemeinschaftsprojekt MARIUS (Magnetic Resonance Imaging using Ultrasound – Systeme und Verfahren zur multimodalen-MR-Bildgebung) arbeiten Experten des Fraunhofer-Instituts für Biomedizinische Technik IBMT in St. Ingbert und des Fraunhofer-Instituts für Bildgestützte Medizin MEVIS in Bremen an einer schnelleren und schonenderen Alternative.

Unterschiedliche Bildgebungsverfahren intelligent kombiniert

Die Idee hinter dem neuen Verfahren: Nur am Anfang wird ein Volumen der Brust aufgenommen, die Patientin muss also nur einmal in den Scanner. Die anschließende Biopsie erfolgt dann per Ultraschallkontrolle, wobei das System das anfänglich aufgenommene MR-Volumen realitätsgetreu umformt und auf einem Bildschirm darstellt. Der Arzt hat also nicht nur die Ultraschallaufnahme für die Navigation der Biopsie-Nadel zur Verfügung, sondern auch ein situationsgetreues MR-Bild, das ihm genau anzeigt, wo der Tumor sitzt.

Die große Herausforderung dabei: Die MR-Aufnahme muss in Bauchlage erfolgen, die Biopsie dagegen in Rückenlage. Mit dieser Änderung der Lage verformt sich die Brust der Patientin, wodurch sich die Position des Tumors signifikant verändert. Um diese Veränderung präzise zu verfolgen, greifen die Forscher zu einem raffinierten Trick: In der Röhre des MR-Scanners nehmen sie mit Schallköpfen, die ähnlich wie EKG-Elektroden auf die Haut geklebt werden, gleichzeitig zur MR-Bilderfassung mehrere Ultraschallbilder auf. Dadurch erhalten sie zwei deckungsgleiche Datenvolumen von zwei unterschiedlichen Bildgebungsverfahren.

Begibt sich die Patientin dann zur Biopsie in einen anderen Untersuchungsraum, nehmen die aufgeklebten Ultraschallköpfe laufend Volumendaten auf und verfolgen die Verformung der Brust kontinuierlich. Spezielle Algorithmen analysieren diese Verformung und wenden sie auf die MR-Aufnahme an. Als Ergebnis wird das MR-Bild synchron zur Ultraschall-aufnahme verformt. Führt der Arzt anschließend die Biopsienadel in das Brustgewebe ein, sieht er auf dem Bildschirm neben dem Ultraschallbild zusätzlich die berechnete MR-Darstellung und weiß dadurch genau, wie er die Nadel zum Tumor führen muss.

Ultraschallgerät direkt am MR-Scanner einsetzbar

Um diese Vision Realität werden zu lassen, entwickeln die Fraunhofer-Wissenschaftler gleich mehrere neue Komponenten. »Wir arbeiten derzeit an einem Ultraschallgerät, das direkt am MR-Scanner einsetzbar ist«, sagt IBMT-Projektleiter Steffen Tretbar. »Dort herrschen hohe Magnetfelder und das Ultraschallgerät muss in diesen Feldern zuverlässig funktionieren, darf aber gleichzeitig die MR-Aufnahme nicht beeinflussen.« Eigens entwickelt werden hierzu auch aufklebbare Ultraschallköpfe, die in der Lage sind, dreidimensionale Ultraschallbilder aufzunehmen.

Ebenfalls neu ist die Software für das Verfahren. »Wir entwickeln eine Echtzeit-Bewegungserfassung, das sogenannte Ultraschall-Tracking «, erläutert MEVIS-Projektleiter Matthias Günther. »Es erkennt ausgedehnte Strukturen in den Ultraschallbildern und verfolgt deren Bewegung. Außerdem ist es notwendig, verschiedenste Sensordaten in Echtzeit zusammenzuführen.« Manche dieser Sensoren erfassen die Position und Orientierung der aufgeklebten Schallköpfe. Andere messen die Orientierung der Patientin.

Einen ersten technischen Demonstrator des Gesamtsystems wird das Team im November auf der Medizinmesse MEDICA 2013 in Düsseldorf am Fraunhofer-Gemeinschaftsstand (Halle 10, F05) präsentieren. Im kommenden Jahr soll dann die nächste Version folgen. Während das IBMT-Team die Hardware und neue Ultraschallverfahren entwickelt, konzentriert sich die MEVIS-Arbeitsgruppe auf die Software.

Das »Ultraschall-Tracking« für Brustbiopsien ist die Leitvision von MARIUS. Jedoch lassen sich die dafür entwickelten Komponenten auch für zahlreiche andere Anwendungen nutzen. So könnte es das MARIUS-System und die Software für die Bewegungserfassung künftig erlauben, mit langsamen bildgebenden Verfahren wie MRT oder Positronen-Emissions-Tomographie (PET) jene Organe präzise zu verfolgen, die sich selbst bei einem ruhenden Patienten bewegen. Neben der Leber und den Nieren, die durch die Atmung in ihrer Lage und Form verändert werden, betrifft dies auch das Herz, das zusätzlich noch eine eigene Kontraktionsbewegung hat. Durch einen Trick bei der Bildrekonstruktion würde in einem MR-Bild etwa das Herz nicht mehr verschwommen erscheinen, sondern deutlich und scharf. Auch für die Therapie mit Teilchen- oder Röntgenstrahlen scheint die gemeinsam entwickelte Technologie interessant: Sitzt der Tumor in oder an einem sich bewegenden Organ, ließen sich die Teilchen- oder Röntgenstrahlen mit der neuen Technik so der Bewegung nachführen, dass sie den Tumor präziser treffen als heute und umliegendes gesundes Gewebe schonen.

Steffen Tretbar | Fraunhofer-Institut
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Oktober/brustkrebs-kombinierte-bildgebung.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht OLED auf hauchdünnem Edelstahl
21.09.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Die Chancen der Digitalisierung für das Betriebliche Gesundheitsmanagement: vitaliberty auf der Zukunft Personal 2017
19.09.2017 | vitaliberty GmbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie