Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser statt Bohrer

02.05.2013
Schwillt nach einem Schlaganfall das Gehirn an, hilft oft nur eine OP, in der die Ärzte die Schädeldecke des Patienten öffnen. Bisher greifen sie dazu zum Bohrer. Künftig soll ein Laserstrahl den Knochen schneiden und das Risiko senken.

Ein Schlaganfall kommt plötzlich und reißt viele Betroffene unvorhergesehen aus ihrem gewohnten Leben. Ist der Infarkt sehr groß, kann das Hirn anschwellen: Der Druck in der Schädelhöhle steigt, das Gehirn wird weniger durchblutet und weiter geschädigt. Um es vor Quetschungen zu schützen, öffnen Ärzte oftmals die Schädeldecke des Patienten – sie sprechen von einer Entlastungs-Kraniotomie.


6 x 8 Millimeter sind die Mikrospiegel des IPMS groß und bieten mehr Fläche als herkömmliche Modelle. Damit lassen sich auch Laserstrahlen mit großem Durchmesser führen. (© Fraunhofer IPMS)

Bisher schneiden die Chirurgen den Schädelknochen mechanisch, also mit einem Bohrer. Das birgt jedoch ein recht hohes Risiko für den Patienten: Mit dem Bohrer kann der Chirurg auch die Hirnhaut verletzen, was zu einer Hirnhautentzündung und schlimmstenfalls zum Tod führen kann.

Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS in Dresden wollen dieses Risiko nun gemeinsam mit ihren Kollegen der Fraunhofer-Institute für Lasertechnik ILT und für Integrierte Schaltungen IIS senken, indem sie den Bohrer durch einen hochenergetischen Femto-Sekundenlaser ersetzen. »Unsere Kollegen am ILT haben eine Vorrichtung entwickelt, mit dem der Chirurg den Laserstrahl führen und den Schädelknochen schneiden kann«, sagt Dr. Thilo Sandner, Gruppenleiter am IPMS.

Neue leistungsstarke Mikrospiegel

Der Laserstrahl wird dabei über einen Spiegel-Gelenkarm in das Handstück eingekoppelt. Dessen Herzstück sind zwei neuartige Mikrospiegel, die die Forscher am IPMS entwickelt haben: Der erste schneidet die Schädeldecke, er lenkt den Laserstrahl dynamisch über den Schädelknochen. Der zweite korrigiert Fehlpositionierungen. Das Besondere: Die Bauelemente sind miniaturisiert, vertragen aber dennoch Laserleistungen von bis zu 20 Watt – also etwa zweihundert Mal mehr als herkömmliche Mikrospiegel. Diese können – abhängig vom konkreten Design – bereits bei 100 Milliwatt an ihre Grenze gelangen. Mit 5 x 7 oder 6 x 8 Millimetern sind die neuen Modelle zudem sehr groß und können somit auch Laserstrahlen mit großem Durchmesser führen. Zum Vergleich: Herkömmliche Mikrospiegel haben eine Größe von 1 bis 3 Millimetern.

Wie haben die Forscher dies erreicht? »Während die Siliziumplatte bei herkömmlichen Mikrospiegeln durch eine hundert Nanometer dicke Aluminiumschicht verspiegelt wird, haben wir hochreflektierende elektrische Schichten auf das Siliziumsubstrat aufgebracht«, erläutert Sandner. Der Spiegel reflektiert daher im sichtbaren Spektralbereich nicht nur 90 Prozent der Laserstrahlung wie übliche Bauelemente, sondern 99,9 Prozent. Es dringt viel weniger der hochenergetischen Strahlung in das Substrat ein.

Das heißt, der Spiegel »merkt« weniger von der Laserstrahlung und verträgt deutlich höhere Leistungen. Die Herausforderung für die Forscher lag vor allem darin, diese Hochleistungsbeschichtung auf das, lediglich wenige zehn Mikrometer dünne, Silizium-Substrat aufzubringen, das in der Mikrosystemtechnik gang und gäbe ist. Denn um die gewünschten Reflektions-Eigenschaften zu erreichen, müssen die Forscher viele verschiedene Schichten aufbringen – insgesamt einige Mikrometer dick.

In jeder dieser Schichten herrscht jedoch eine gewisse mechanische Spannung, zudem dehnen sich alle Schichten bei hoher Temperatur unterschiedlich stark aus. Das führt dazu, dass sich das Substrat durch die Beschichtung verformt, es wölbt sich. »Diese Wölbung verschlechtert die optische Qualität des Spiegels. Wir gleichen sie aus, indem wir auf der Rückseite des Substrates nochmal dieselben Schichten aufbringen«, verrät Sandner.

Demonstratoren des Handstücks sowie des Mikrospiegels gibt es bereits. Auf der Messe Laser – World of Photonics vom 13. bis 16. Mai in München stellen die Forscher diese vor (Halle B2, Stand 421). In weiteren Entwicklungsschritten wollen die Forscher nun die Schneidleistung optimieren.

Dr.-Ing.ThiloSandner | Fraunhofer-Institut
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Mai/laser-statt-Bohrer.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht »Lasertechnik Live« auf dem International Laser Technology Congress AKL’18 in Aachen
23.02.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Empa zeigt «Tankstelle der Zukunft»
23.02.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics