Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

K 2016: Von OLED-Verkapselung bis Plagiatschutz

29.09.2016

Beim Auftrag ultradünner transparenter Lacke auf transparente Folienbänder können Defekte in der Schicht erstmals direkt während des Beschichtungsprozesses sichtbar gemacht werden. Möglich wird dies durch ein inline-Detektionssystem, das mit Fluoreszenzfarbstoffen arbeitet. Drei Institute der Fraunhofer-Allianz Polymere Oberflächen POLO® haben das Verfahren entwickelt. Hightech-Anwendungen wie Ultrabarrierefolien für OLEDs können davon profitieren, denn die Inline-Prozesskontrolle verhindert Produktionsfehler und erspart Reklamationen. Das Farbstoff/Kamera-System kann zudem die Echtheit von fluoreszenzmarkierten Materialien belegen. Auf der Kunststoffmesse K wird das System vorgestellt.

K 2016 | Düsseldorf | 19. bis 26. Oktober | Halle 07 | Stand SC01


Künftig können Verkapselungsfolien für flexibel organische Leuchtdioden (OLED) ohne Defekte hergestellt werden.

© Fraunhofer IAP, Foto: Armin Okulla


Die Ultrabarrierefolie der Fraunhofer-Allianz POLO® muss für die Verkapselung organischer Leuchtdioden oder Solarzellen allerhöchste Anforderungen erfüllen: Sie schützt die empfindlichen organischen Materialien über Jahre vor Sauerstoff und Wasserdampf.

Die Folie soll dabei dünn und transparent sein. Eine für die Barriereeigenschaften wichtige Schicht – ein extrem dünner Lack – besteht aus einem Hybridpolymer (ORMOCER®) des Fraunhofer ISC. Die Lackschicht muss an allen Stellen exakt gleichmäßig dünn sein – und unter einem Mikrometer liegen. Die Fraunhofer-Institute für Angewandte Polymerforschung IAP in Potsdam, für Verfahrenstechnik und Verpackungen IVV in Freising und für Silicatforschung ISC in Würzburg haben dafür ein inline-Detektionssystem entwickelt.

Live ermittelt: Schichtdickenverteilung und Härtungsgrad

Der transparente Barrierelack besteht aus dem Hybridpolymer ORMOCER® des Fraunhofer ISC. Er wird im Rolle-zu-Rolle-Verfahren auf eine transparente Folie aufgetragen. »Beide Materialien, Lack und Folie, haben einen sehr ähnlichen Brechungsindex. Das macht die Bestimmung der Schichtdicke zu einer großen Herausforderung, insbesondere weil der Lack extrem dünn aufgetragen wird«, erklärt Dr. Andreas Holländer, Sprecher der Fraunhofer-Allianz POLO® und Oberflächenspezialist am Fraunhofer IAP.

Die Forscher haben dafür eine clevere Lösung gefunden: Sie mischen eine kleine Menge eines fluoreszierenden organischen Farbstoffs in den ORMOCER®-Lack. Seine Konzentration entspricht in etwa 0,001 Prozent. Der Farbstoff absorbiert Licht einer bestimmten Wellenlänge und sendet Licht einer längeren Wellenlänge, also einer anderen Farbe, aus. Bereits geringste Konzentrationen des Farbstoffes können detektiert werden. Bei einigen Fluoreszenzfarbstoffen können die benachbarten Moleküle die Intensität oder die Wellenlänge des ausgesandten Lichts beeinflussen. Beispielsweise führt die Aushärtung der Lackschicht zu einem stärkeren Fluoreszenzsignal. Werden solche Farbstoffe kombiniert, können Informationen über die Dickenverteilung und den Härtungsgrad der Schicht gewonnen werden.

Niedrigere Kosten durch perfekte Schichten

Für das Auftragen des ORMOCER®-Lacks wurde das Detektionssystem in den Rolle-zu-Rolle-Prozess am Fraunhofer IVV zur Herstellung der Ultrabarrierefolie eingebunden. Zwei Typen monochromatischer LED-Lampen bestrahlen den Lack. Zwei kommerziell erhältliche Digitalkameras messen die ausgestrahlte Fluoreszenz zweier Farbstoffe im Lack. »Die Farbstoffe bestimmen z. B. die Art der Lichtquelle oder der Filter«, erklärt Holländer, der am Fraunhofer IAP das Farbstoff/Kamera-System entwickelt hat.

»Die Farbstoffe müssen zudem im Beschichtungssystem löslich sein. Ihre optischen Eigenschaften dürfen sich nicht mit denen der Beschichtung selbst überlagern«, so Holländer. Mit Hilfe der elektronischen Bildgebung werden Defekte in der Lackschicht erstmals direkt sichtbar und der Beschichtungsprozess kann sofort und präzise angepasst werden. Solche Mängel zeigten sich bisher erst während der Anwendung, z. B. durch eine zu kurze Lebensdauer der OLEDs. Ein Imageschaden einerseits und andererseits auch zusätzliche Kosten durch Rückrufaktionen oder Reklamationen können mit dem nun zur Verfügung stehenden System vermieden werden.

Chemisch nicht analysierbar: Materialien mit Fluoreszenz kennzeichnen

Da die Farbstoffe in so geringen Konzentrationen zugesetzt werden, dass sie chemisch nicht analysierbar sind, setzen die Forscher das Prinzip auch für den Plagiatschutz von Materialien ein. »Wenn man nicht herausfinden kann, welche Farbstoffe enthalten sind, kann man die Markierung auch nicht so leicht kopieren«, so Holländer. »Zudem gibt es einige Tausend kommerziell verfügbare Fluoreszenzfarbstoffe, die miteinander kombiniert werden können.

Daraus ergeben sich unzählig viele mögliche Varianten. Werden Massenkunststoffe oder auch hochwertige Materialien wie Schmierstoffe damit markiert, können diese über eine Art eigenen Fluoreszenz-Code auf ihre Echtheit geprüft werden«, erklärt der IAP-Wissenschaftler. Dank seines einfachen Aufbaus kann das fluoreszenzbasierte Inline-Bildgebungssystem leicht in bestehende Prozesse integriert werden. Künftig soll das System auch kommerziell verfügbar sein.

Auf der K 2016, der führenden Messe für die Kunststoff- und Kautschukindustrie, stellen die Forscher die Entwicklung vom 19. bis 26. Oktober in Düsseldorf in Halle 07 auf dem Fraunhofer-Gemeinschaftsstand SC01 vor.

Die Fraunhofer-Allianz Polymere Oberflächen POLO®

Die Fraunhofer-Allianz Polymere Oberflächen POLO® bündelt die Einzelkompetenzen von sieben Fraunhofer-Instituten und entwickelt innovative Konzepte, Technologien und Materialien für die Funktionalisierung von polymeren Oberflächen. Die POLO®-Institute verfügen über umfangreiche Methoden zur Charakterisierung und Analytik von Polymermaterialien, Oberflächen, Grenzflächen und dünnen Schichten. Die technischen Anlagen zur Oberflächenbeschichtung und -modifizierung zählen zu den führenden Ausstattungen weltweit.

Fraunhofer POLO® ist ein kompetenter Partner für Hersteller, Verarbeiter und Anwender von Kunststoffen.

Institute:
- Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP, Dresden
- Fraunhofer-Institute für Angewandte Polymerforschung IAP in Potsdam
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Bremen
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Stuttgart
- Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Stuttgart
- Fraunhofer-Institut für Silicatforschung ISC, Würzburg
- Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV, Freising

Weitere Informationen:

http://www.polo.fraunhofer.de

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Zukunft Personal: Workforce Management – Richtig aufgestellt für die voranschreitende Digitalisierung
25.07.2017 | GFOS mbH Gesellschaft für Organisationsberatung und Softwareentwicklung mbH

nachricht EMAG auf der EMO: Elektrische Antriebssysteme und die „Smart Factory“ stehen im Fokus
05.07.2017 | EMAG GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise