Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Infrarot-Strahler machen das Kunststoffschweißen partikelfrei

03.08.2012
Ansaugrohre, Lüftungsteile sowie Behälter für Bremsflüssigkeit oder Wischwasser in Autos müssen im Einsatz Druck aushalten.

Häufig werden die Rohre und Behälter im Spritzgussverfahren als Kunststoffhalbschalen hergestellt und später zu einer Einheit verschweißt. Infrarot-Wärmetechnologie hilft, die Teile zuverlässig zu verbinden, ohne dabei Partikel im Rohrinneren zu verursachen. Besonders vorteilhaft erweist sich in vielen Fällen eine Kombination aus Infrarot-Vorwärmung und Vibrationsschweißen.





Infrarot-Wärme hilft partikelfrei Kunststoffrohre zu verschweißen.

Copyright Heraeus Noblelight 2012

Die Infrarot-Strahlung schmilzt die Kunststoffoberfläche an, so dass bei der Vibration die Partikelbildung minimiert wird. Das sorgt für eine sichere Verbindung und für qualitativ einwandfreie Behälter.

Heraeus Noblelight stellt anwendungsoptimierte Infrarot-Strahler für die Kunststoffverarbeitung auf der Fakuma in Friedrichshafen aus, von 16. bis 20. Oktober, Halle B1 und Stand 1121.

Druckrohre aus Spritzguss kommen im Kühler oder beim Turbomotor zum Einsatz, Behälter enthalten Wasser oder Bremsflüssigkeit. Gerade unter Druck müssen Fügenähte halten und weder im Turbo, noch in der Bremsflüssigkeit sollten Kunststoffpartikel aus der Produktion die spätere Funktion stören.

Infrarot-Strahlung wird kontaktfrei übertragen und erzeugt Wärme direkt im Werkstück. Damit ist sie herkömmlichen Methoden, wie etwa der Erwärmung durch Kontaktplatten, überlegen. Anders als beim Schweißen mit Kontaktwärme bleibt kein heißer Kunststoff an der Wärmequelle hängen. Dadurch können Kunststoffteile mit Infrarot-Wärmesystemen im Sekundentakt und jederzeit reproduzierbar verschweißt werden. Infrarot-Strahlung schmilzt in wenigen Sekunden gezielt die Oberfläche der Produkte an, die dann durch einfaches Zusammendrücken verbunden werden.

Beim Vibrationsschweißen können je nach Kunststoffart größere Partikel entstehen, die später in den Kreislauf von Kühlwasser, Servoöl oder Bremsflüssigkeit gelangen können und deren Funktion stören. Außerdem ist es unangenehm für den Fahrer, wenn Partikel durch Luftkanäle ins Autoinnere geblasen werden.

Eine Kombination von Infrarot-Strahlern mit Vibrationsschweißverfahren schafft hier in der Praxis Abhilfe. Dabei fährt ein Infrarot-Strahlermodul zwischen zwei Kunststoffteile ein und erwärmt kontaktfrei die Oberflächen der beiden Teile. Wenn die vorgegebene Temperatur erreicht ist, fährt das Infrarot-Modul heraus und der eigentliche Schweißvorgang startet.

Versuche bei Anwendern zeigen, dass Nähte, die mit Hilfe von Infrarot-Strahlung verschweißt wurden, einem hohen Druck sehr gut standhalten.

Infrarot-Strahler werden exakt angepasst

Form, Farbe und Materialeigenschaften der Kunststoffteile bestimmen den Erfolg des Schweiß- oder Fügeprozesses:

• Kurzwellige Strahler und Carbon Infrarot-Strahler reagieren innerhalb von Sekunden auf Steuerbefehle. So kann die richtige Intensität und Zeitdauer der Strahlung gewählt werden, um verschiedene Kunststoffe zum Schmelzen zu bringen.

• Füllmaterialien haben Einfluss auf das Schweißergebnis. Mineralische Füllstoffe in Kunststoffen machen diese flammenhemmend, durch eine Verstärkung mit Glasfasern werden Behälter druckstabil. Je höher jedoch der Anteil der Füllstoffe, desto schwieriger sind diese Kunststoffe zu verschweißen. Flammenhemmende Stoffe schmelzen schlecht und ein Glasfaseranteil von über 35 % kann den Schweißprozess nahezu unmöglich machen. Infrarot-Strahler können, anders als Kontaktplatten, nicht durch Glasfasern geschädigt werden, da die Erwärmung kontaktfrei geschieht.

• Schwarze Kunststoffe absorbieren Infrarot-Strahlung generell besser als weiße oder transparente. Versuche zeigen, dass Halbschalen aus Polyamid, die zu einem Hohlkörper zusammen gefügt werden, in schwarzem Material dreimal schneller als in hellem Kunststoff die Zieltemperatur erreichen.

• Eine echte Herausforderung ist das Verschweißen von dreidimensionalen Konturen. Je komplexer die Struktur, desto schwieriger wird der gesamte Prozess. Vibrationsschweißen wird hier unter Umständen vollständig unmöglich, weil manche Konturen nicht mehr sauber schwingen können. Hier bieten Infrarot-Strahler aus Quarzglas einen Ausweg, denn es ist möglich, sie den Konturen dreidimensional nachzuformen.

• Standardisierte Flächenstrahler können für verschiedene Geometrien eingesetzt werden, wenn sie durch Abdeckmasken jeweils an das Kunststoffteil angepasst werden. So lassen sich einfach und schnell mehrere Bauteile mit einem Flächenstrahler bearbeiten. Zusätzlich minimieren die Abdeckmasken die Einstrahlung in die Anlagenperipherie.

Sorgfältig ausgesuchte Infrarot-Strahler helfen, Kunststoffteile für Autos in hoher Qualität zusammen zu fügen. Da die Infrarot-Strahler nur dann angeschaltet sein müssen, wenn die Wärme wirklich benötigt wird, ist das Schweißen mit Infrarot-Wärme nicht zuletzt sehr energieeffizient.

Heraeus Noblelight GmbH mit Sitz in Hanau, mit Tochtergesellschaften in den USA, Großbritannien, Frankreich, China und Australien, gehört weltweit zu den Markt- und Technologieführern bei der Herstellung von Speziallichtquellen. Heraeus Noblelight wies 2011 einen Jahresumsatz von 103 Millionen € auf und beschäftigte weltweit 731 Mitarbeiter. Das Unternehmen entwickelt, fertigt und vertreibt Infrarot- und Ultraviolett-Strahler für Anwendungen in industrieller Produktion, Umweltschutz, Medizin und Kosmetik, Forschung und analytischen Messverfahren.

Der Edelmetall- und Technologiekonzern Heraeus mit Sitz in Hanau ist ein weltweit tätiges Familienunternehmen mit einer über 160-jährigen Tradition. Unsere Kompetenzfelder umfassen die Bereiche Edelmetalle, Materialien und Technologien, Sensoren, Biomaterialien und Medizinprodukte, Dentalprodukte sowie Quarzglas und Speziallichtquellen. Mit einem Produktumsatz von 4,8 Mrd. € und einem Edelmetallhandelsumsatz von 21,3 Mrd. € sowie weltweit über 13.300 Mitarbeitern in mehr als 120 Gesellschaften hat Heraeus eine führende Position auf seinen globalen Absatzmärkten.

Für weitere Informationen wenden Sie sich bitte an:
Hersteller:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Redaktion:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Weitere Informationen:
http://www.heraeus-noblelight.com/infrared

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Diamantlinsen und Weltraumlaser auf der Photonics West
15.12.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht COMPAMED 2017 zeigte neue Fertigungsverfahren für individualisierte Produkte
06.12.2017 | IVAM Fachverband für Mikrotechnik

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik