Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grüne Technologien für die Luftfahrt

09.07.2012
Ökologisch und ökonomisch: Das Fraunhofer IBP präsentiert sich auf der Farnborough International Airshow in England

Im Rahmen des europäischen Projekts »Clean Sky« hat sich das Fraunhofer IBP gemeinsam mit weiteren Fraunhofer-Instituten sowie Partnern aus der Luftfahrtindustrie ein bedeutendes Ziel gesetzt.


Das Fraunhofer IBP verfügt an seinem Standort in Holzkirchen über eine weltweit einmalige Testeinrichtung, die »Flight Test Facility«. Schon bald kommt am Standort Holzkirchen ein ebenfalls einmaliger thermischer Prüfstand, die Ground Thermal Test Bench, hinzu. (© Fraunhofer IBP)


Die „Ground Thermal Test Bench“ dient zur Simulation und Prüfung von Flugzeugsystemen unter thermischen Gesichtspunkten. (© Fraunhofer IBP)

Die Forscher wollen mit ihrer Arbeit dazu beitragen, die CO2- und Stickoxidemissionen sowie die Lärmbelastung in den kommenden Jahren deutlich zu senken. Zentrale Frage ist hier die nach der »Ökolonomie«: Wie kann der Flugverkehr stetig ökologischer werden, dabei aber auch ökonomisch bleiben? Neben der Schadstoff- und Lärmreduktion geht es im Wesentlichen um Energieeffizienz und einen nachhaltigen Lebenszyklus. Auf der Farnborough International Airshow in England zeigt das Fraunhofer IBP von 9. bis 13. Juli (Stand C 2, Halle 2) seine Antworten auf diese Frage. Das Fliegen ist im Laufe der vergangenen Jahrzehnte zu einem essenziellen gesellschaftlichen Element geworden. Die Luftfahrt bringt nicht nur Menschen zusammen, sondern ermöglicht weltweiten Handel und wirtschaftliches Wachstum. Gleichzeitig ist die Industrie sehr sensibel für Umweltbelange wie Luftverschmutzung, Lärm und Klimawandel.

Die Technologieinitiative »Clean Sky« ist mit 1,6 Milliarden Euro das größte EU-Projekt für Nachhaltigkeit und Wettbewerbsfähigkeit der Luftfahrt in Europa. Ziel ist die Steigerung der Wettbewerbsfähigkeit der europäischen Luftfahrtindustrie bei gleichzeitiger Abnahme der Umweltbelastung infolge des steigenden Flugaufkommens. Bis 2020 sollen sich die CO2-Emissionen um 50 Prozent, die Stickoxidemissionen um 80 Prozent, die Lärmbelästigung um 50 Prozent senken und ein nachhaltiger Lebenszyklus für alle Komponenten des Luftverkehrs einführen lassen.

»Das Fliegen und damit die Luftfahrt gewinnt in unserer globalisierten Gesellschaft immer mehr an Bedeutung. Umso wichtiger ist es, sowohl der Ökologie als auch der Ökonomie, also der Ökolonomie, Rechnung zu tragen. Unter dem Gesichtspunkt forscht auch das Fraunhofer-Institut für Bauphysik an neuen Architekturen für Flugzeuge, damit diese umweltfreundlicher werden, ihren Passagieren aber gleichzeitig ein Maximum an Komfort und Leistung bieten«, sagt John Cullen Simpson, Vorsitzender der Fraunhofer Aviation Group.

Testflüge am Boden am Standort Holzkirchen

An seinem Standort in Holzkirchen verfügt das Fraunhofer IBP über eine weltweit einmalige Testeinrichtung, die „Flight Test Facility“ (FTF). In einer Niederdruckkammer befindet sich ein originales Flugzeugsegment mit rund 15 Meter Länge und Platz für bis zu 80 Probanden. Neben Untersuchungen zum Kabinenklima wird auch das Flugzeug als Gesamtsystem erforscht. Dabei werden beispielsweise Cockpit, Passagierkabine, Avionik und Frachtraum unter energetischen Aspekten und Nutzungsanforderungen betrachtet. Zudem ist das Fluglabor vor kurzem durch eine weitere einzigartige Testvorrichtung ergänzt worden. Die „Ground Thermal Test Bench“, ein thermischer Prüfstand, eröffnet den Wissenschaftlern und ihren Partnern aus der Industrie zusätzliche Forschungsfelder. Vor dem Hintergrund der „all-electric“-Philosophie, das heißt dem zunehmenden Einsatz von Elektronik statt Hydraulik zur Steuerung sämtlicher Funktionen, sowie der Verwendung leichter Materialien in der Entwicklung neuer Flugzeuge spielt der Prüfstand eine wichtige Rolle bei der Simulation und Prüfung neuer Systeme unter thermischen Gesichtspunkten. Auch hier ist ein originaler Flugzeugrumpf im Einsatz, der – in drei typische Bereiche des Flugzeugs (Cockpit, Kabine und Heck) aufgeteilt – verschiedenste thermische Messungen ermöglicht. Ziel ist es, innovative Energiemanagementkonzepte zu entwickeln, zu validieren und schließlich zu demonstrieren.

Mithilfe der Ökobilanzierung zum ökologisch gerechten Design

Nachhaltigkeit spielt auch im Bereich der Luftfahrt eine zentrale Rolle. Diverse Studien zeigen, dass sowohl das Transport- als auch das Passagieraufkommen in den nächsten Jahren stark ansteigen werden. Um dennoch die Umweltwirkung zu reduzieren, ist es notwendig, neue und ökologischere Entwicklungen zu untersuchen sowie bestehende Prozesse zu optimieren. Aufbauend auf dem Lebenszyklusgedanken arbeitet das Fraunhofer IBP daher mit der Methode der Ökobilanzierung. Für die Beurteilung der Nachhaltigkeit sowie der Identifikation der systemrelevanten Einflussgrößen und Parameter eines Flugzeuges werden seine drei Lebenszyklusphasen (Entwicklung und Herstellung, Nutzung sowie Recycling bzw. Entsorgung) analysiert. Anwendungsfelder und Themenschwerpunkte finden sich in der Prozessanalyse und -optimierung, der Bewertung von Recyclingkonzepten, Zukunftstechnologien sowie der Bilanzierung von Gesamtflugzeugen und -systemen. Basierend auf den Ergebnissen der Ökobilanz lassen sich zudem zielgerichtete Maßnahmen und Strategien zum ökologisch gerechten Design der betrachteten Systeme ableiten.

Mehr als nur Abfall: Am Ende des Lebenszyklus

Der Wiederverwertungsgedanke ist auch zentrales Element der Arbeit im Betonlabor des Fraunhofer IBP. Das Recycling ist eines der gravierenden Probleme in der Luftfahrtindustrie – bisher lassen sich ausrangierte Maschinen nämlich nur sehr schwer entsorgen. Deshalb arbeiten die Wissenschaftler am Fraunhofer IBP derzeit an Lösungen zur Wiederverwertung von Flugzeugteilen und ihren Komponenten. So könnte sich Aluminiumabfall aus ausgemusterten Flugzeugen in Zukunft beispielsweise in antimikrobiell beschichteten Pflastersteinen wiederfinden. Derzeit wird hauptsächlich Kupferschlacke verwendet, um ungewollten Bewuchs auf Gehwegen, Einfahrten etc. zu verhindern. Ebenso gute Ergebnisse erzielt man mit Aluminiumabfall aus Flugzeugen, der dafür mit Säure vorbehandelt wird. Das dabei gewonnene Aluminiumfluoridhydrat wird gemeinsam mit Zement zur Beschichtung von Pflastersteinen verwendet und hat bisherigen Untersuchungen zufolge bereits in einer Konzentration von 0,1% sehr gute antimikrobielle Eigenschaften.

Neben Aluminiumschrott kommt in Zukunft auch verstärkt ein weiteres Abfallprodukt in der Luftfahrtindustrie hinzu: Im Flugzeugbau werden Metalle zunehmend durch Karbonfaser verstärkte Kunststoffe (CFKs) ersetzt, da sie bei geringerem Gewicht vergleichbare mechanische Eigenschaften aufweisen. Für ihre Wiederverwertung gibt es jedoch bislang noch keine wirtschaftlichen Lösungen. Derzeit werden CFKs entweder mit energieaufwendigen Prozessen, wie Hochtemperaturpyrolyse behandelt, oder mechanisch zerkleinert. Doch nur bei ersterem Verfahren ist die Wiedergewinnung der Fasern möglich. Die Wissenschaftler des Fraunhofer IBP forschen deshalb an der Weiterentwicklung eines Verfahrens, das ursprünglich aus dem Bergbau kommt.

Die elektrodynamische Fragmentierung wird zum Beispiel zur Zerkleinerung von hochreinem Quarz für die Silizium-Wafer Industrie eingesetzt. Das Verfahren beruht auf dem Prinzip, dass ultrakurze Unterwasserimpulse Festkörper selektiv fragmentieren, indem die Blitzentladungen bevorzugt entlang von Phasengrenzen verlaufen. Ein elektrischer Blitzschlag erzeugt dabei Druckwellen mit einer Sprengwirkung einer TNT-Explosion, wodurch das Verbundmaterial in seine Komponenten zerlegt wird. Die Fasern können so also erhalten bleiben und wiederverwendet werden. Gleichzeitig ist der Energieaufwand deutlich geringer als bei anderen Methoden, die den Fasererhalt ermöglichen. Noch steht das Verfahren in diesem neuen Anwendungsfeld am Anfang, doch arbeiten die Fraunhofer-Forscher intensiv an seiner Weiterentwicklung, um auch die Recycelbarkeit von Karbonfaser verstärkten Kunststoffen und deren Wirtschaftlichkeit voranzutreiben. Denn auch hier steht die Frage der Ökolonomie an vorderster Stelle.

Die Aufgaben des Fraunhofer-Instituts für Bauphysik, IBP konzentrieren sich auf Forschung, Entwicklung, Prüfung, Demonstration und Beratung auf den Gebieten der Bauphysik. Dazu zählen z. B. der Schutz gegen Lärm und Schallschutzmaßnahmen in Gebäuden, die Optimierung der Akustik in Räumen, Maßnahmen zur Steigerung der Energieeffizienz und Optimierung der Lichttechnik, Fragen des Raumklimas, der Hygiene, des Gesundheitsschutzes und der Baustoffemissionen sowie die Aspekte des Wärme-, Feuchte- und Witterungsschutzes, der Bausubstanzerhaltung und der Denkmalpflege. Über eine ganzheitliche Bilanzierung werden Produkte, Prozesse und Dienstleistungen unter ökologischen, sozialen und technischen Gesichtspunkten analysiert, um damit die Nachhaltigkeit, die nachhaltige Optimierung und die Förderung von Innovationsprozessen zu bewerten. Die Forschungsfelder Bauchemie, Baubiologie und Hygiene sowie das Arbeitsgebiet Betontechnologie komplettieren das bauphysikalische Leistungsspektrum des Instituts. Der Standort Kassel verstärkt die traditionellen Aktivitäten auf den Gebieten der rationellen Energieverwendung und bündelt die Entwicklung von anlagentechnischen Komponenten.

Janis Eitner | Fraunhofer-Institut
Weitere Informationen:
http://www.ibp.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Infrarotkamera für die Metallindustrie bis 2000 °C
28.04.2017 | Optris GmbH

nachricht ZMP 2017 – Latenzzeitmesseinrichtung für moderne elektronische Zähler
27.04.2017 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie