Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefährliche Stoffe in kleinen Reaktoren produzieren - ACHEMA 2012

25.05.2012
Je größer das Reaktionsgefäß, desto schneller lassen sich Produkte herstellen – würde man meinen.
Wie falsch man damit liegt, zeigen Mikroreaktoren: In ihnen lassen sich beispielsweise explosive Stoffe wie Nitroglycerin etwa zehnmal schneller fertigen als auf herkömmliche Art, und zudem viel sicherer. Auf der Messe ACHEMA vom 18. bis 22. Juni in Frankfurt zeigen Forscher Mikroreaktoren, die sie für unterschiedliche chemische Prozesse einsetzen (Halle 9.2, Stand D64).

Sollen Tunnel in einen Berg getrieben werden, greifen die Arbeiter zu Sprengstoffen: Der 15 Kilometer lange Gotthardtunnel beispielsweise wurde mit Sprenggelatine »gebaut«, die zu einem großen Teil aus Nitroglycerin – besser bekannt als Dynamit – besteht. Bei der Herstellung der Sprengstoffe ist äußerste Vorsicht geboten, schließlich sollen sie ihre Sprengleistung nicht im Labor entfalten. Da bei ihrer Produktion Wärme entsteht, muss es langsam gehen: Tropfen für Tropfen fließen die Reaktionspartner in die Rührkessel, in denen sich die Ausgangssubstanz befindet. Denn erwärmt sich das Gemisch zu stark, kann es zu Explosionen kommen. Es darf daher nicht mehr Wärme entstehen, als abgeführt werden kann.

Sicherer zum Sprengstoff
Eine Methode, das Nitroglycerin sicherer zu fertigen, haben Forscher am Fraunhofer-Institut für Chemische Technologie ICT in Pfinztal entwickelt: Einen Mikroreaktor-Prozess, der für diese Reaktion maßgeschneidert ist. Der Grund für die bessere Sicherheit liegt in den winzigen Mengen. Denn sind die Mengen kleiner, entsteht auch weniger Wärme. Zudem ist die Oberfläche im Verhältnis zum Volumen sehr groß – das System lässt sich daher sehr gut kühlen.

Ein weiterer Vorteil: Der kleine Reaktor stellt den explosiven Stoff um ein Vielfaches schneller her als man es in Rührkesseln könnte. Denn im Gegensatz zum Rührkessel, der gefüllt wird und in dem dann langsam die Reaktion abläuft, arbeitet der Mikroreaktor kontinuierlich: Durch kleine Kanäle fließen »am laufenden Band« die Ausgangsstoffe in die Reaktionskammer, wo sie einige Sekunden lang miteinander reagieren, und dann durch weitere Kanäle in einen zweiten Mikroreaktor strömen, wo sie aufbereitet, also gereinigt werden. Denn das entstandene Produkt enthält noch Verunreinigungen, die aus Sicherheitsgründen entfernt werden müssen. Die Reinigung im Mikroreaktor funktioniert einwandfrei: Das hergestellte Produkt entspricht den Pharmaspezifikationen und kann in abgewandelter Form sogar in Nitrokapseln für Herzkranke verwendet werden. »Es ist bisher einmalig, dass Mikroreaktoren in einem Prozess sowohl für die Synthese eines Stoffes als auch für seine anschließende Aufarbeitung eingesetzt werden«, sagt Dr. Stefan Löbbecke, stellvertretender Hauptabteilungsleiter am ICT. Der Mikroreaktorprozess wird bereits erfolgreich in der Industrie angewendet.
Bei der Entwicklung eines Mikroreaktors passen die Forscher die Reaktoren jeweils an die gewünschte Reaktion an: Wie groß dürfen die Kanäle sein, damit die Wärme noch gut abgeführt werden kann? Wo müssen die Forscher Hindernisse in die Kanäle bauen, um die Flüssigkeiten gut zu durchmischen und die Reaktion gut ablaufen zu lassen? Ein weiterer wichtiger Parameter ist die Geschwindigkeit, mit der die Flüssigkeiten durch die Kanäle strömen: Sie müssen zum einen genügend Zeit haben, um miteinander zu reagieren, andererseits soll die Reaktion beendet werden, sobald sich das Produkt gebildet hat. Sonst können zu viele unerwünschte Nebenprodukte entstehen.

Weniger Fehlstellen in Polymeren für organische Leuchtdioden
Auch wenn sich Mikroreaktoren für explosive Stoffe anbieten, ist ihr Anwendungsbereich damit keineswegs erschöpft: Die Forscher am ICT stellen Reaktoren für alle erdenklichen chemischen Reaktionen her – jeweils maßgeschneidert für die entsprechende Reaktion. Ein weiteres der zahlreichen Beispiele ist ein Mikroreaktor, der Polymere für OLEDs herstellt. OLEDs sind organische Leuchtdioden, die vor allem für Displays und Bildschirme verwendet werden. Die Polymere, aus denen sie bestehen, leuchten farbig. Bei ihrer Herstellung, ihrer Synthese, entstehen jedoch leicht Fehlstellen, die den Polymeren einen Teil ihrer Leuchtkraft nehmen. »Über eine genaue Prozessführung können wir die Zahl dieser Fehlstellen minimieren«, sagt Löbbecke. Dazu haben die Forscher die Reaktion zunächst ganz genau analysiert: Wann bilden sich die Fehlstellen aus? Wie schnell muss der Prozess laufen? »Viele Reaktionsvorschriften, die man von den großen Prozessen, den Batch-Prozessen, kennt, entpuppen sich als unnötig. Die Ausgangsstoffe brauchen oftmals nicht stundenlang zu kochen, stattdessen reichen ein paar Sekunden«, weiß der Forscher. Denn durch das lange Kochen können sich die Produkte wieder zersetzen oder ungewünschte Nebenprodukte bilden.

Mit speziell angepassten Mikroreaktoren lassen sich beispielsweise explosive Stoffe schneller und sicherer herstellen. Fraunhofer ICT

Um einen Mikroreaktor für eine neue Reaktion zu entwickeln und zu optimieren, sehen die Forscher sich die laufende Reaktion in Echtzeit an, sie schauen quasi in den Reaktor hinein. Hilfsmittel sind verschiedene Analyse-Verfahren: Einige, beispielsweise spektroskopische Verfahren, verraten ihnen, welche Stoffe im Mikroreaktor entstehen – und damit auch, wie sie die Ausbeute des gewünschten Produktes gezielt erhöhen können und Nebenprodukte nach Möglichkeit gar nicht erst entstehen lassen. Andere Verfahren wie die Kalorimetrie geben den Wissenschaftlern Informationen über die Wärme, die sich bei der Reaktion entwickelt. Diese Messmethode verrät ihnen, wie schnell und vollständig die Reaktion abläuft. Sie gibt auch Hinweise darauf, wie die Prozessbedingungen gewählt werden müssen, um die Reaktion auf sichere Art ablaufen zu lassen. Auf der Messe ACHEMA vom 18. bis 22. Juni in Frankfurt stellen die Forscher verschiedene Mikroreaktoren, Mikroreaktorprozesse und Prozessanalysetechniken vor.

Marion Horn | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/de/veranstaltungen-messen/messen/achema2012.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht »Lasertechnik Live« auf dem International Laser Technology Congress AKL’18 in Aachen
23.02.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Empa zeigt «Tankstelle der Zukunft»
23.02.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics