Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fraunhofer LBF auf der Messe „K“: Mit moderner Schadensanalytik verstehen, wie Kunststoffe altern

30.09.2016

Viele Sicherheitsbauteile bestehen aus Kunststoffen. Im täglichen Gebrauch müssen sie nicht nur aggressiven Medien standhalten, sondern auch hohe mechanische Lasten ertragen. Die Frage, wie haltbar sie dabei sind, untersucht das Fraunhofer LBF mit bildgebenden analytischen Techniken. Diese Verfahren verbessern die Schadensanalytik an Kunststoffprodukten, weil sie aufgrund einfacher Probenvorbereitung, hoher Empfindlichkeit und Ortsauflösung frühzeitig Materialveränderungen erkennen. Durch die direkte Verknüpfung des sichtbaren Bilds mit spektroskopischer Information lassen sich Parameter wie Abbaugrad des Polymeren, Additivgehalt und Morphologie ortsaufgelöst mit hoher Präzision untersuchen

Moderne bildgebende Analysemethoden sind leistungsfähige Hilfsmittel bei der Ursachenklärung von Schadensfällen an Kunststoffkomponenten. Sie sind ein wertvolles Instrument bei der Statusanalyse von Bauteilen, die belastenden Betriebsbedingungen wie korrosiven Medien, Wärme oder Strahlung ausgesetzt waren.


Abb. 1 Orts- und zeitaufgelöster Gehalt von stabilisierendem Additiv in einem Bauteil.

Grafik: Fraunhofer LBF


Abb. 2 Kristallite von Additiven in unterschiedlich verarbeiteten Compounds.

Grafik: Fraunhofer LBF

Das Fraunhofer LBF hat in intensiver Forschungsarbeit Messprotokolle für eine große Bandbreite von Compounds thermoplastischer Kunststoffe und Elastomeren erarbeitet, die es ermöglichen, mit höchster Ortsauflösung die räumliche Verteilung von Materialparametern in Bauteilen zu bestimmen. Dies hat die Aufklärung von Schadensfällen deutlich verbessert.

Durch Nutzung der aufgebauten Datenbanken und der umfassenden Expertise auf dem Gebiet der Materialanalytik lassen sich die Einsatzmöglichkeiten von Polymeren in hoch belastenden Anwendungen zukünftig sehr viel zuverlässiger abschätzen. Die neuen Möglichkeiten der ortsaufgelösten Materialanalyse werden am Fraunhofer LBF systematisch zur Entwicklung neuer Polymerrezepturen eingesetzt. Dies reicht von der Auswahl der geeigneten Additivierung über die Optimierung der Verarbeitung bis hin zum Einsatztest.

Schädigungsprozesse besser erfassen

Polymere sind häufig Betriebsbedingungen ausgesetzt, die zu einem Materialabbau führen können. Zu den chemischen Einflussfaktoren zählen flüssige und gasförmige Umgebungsmedien, zu den physikalischen Größen die Temperatur und mechanische Last (Druck, Spannung). Sie können aufgrund der Extraktion stabilisierender Additive, eindringender Medien und Veränderungen der Molekulargewichtsverteilung des Polymeren zu Materialveränderungen führen.

Ein klassischer Analyseansatz mit mechanischer Probenpräparation, gefolgt von molekularanalytischen Techniken, wie Gelpermeationschromatografie (GPC) und Messung der oxidativen Induktionszeit (OIT) der einzelnen Proben, ist nicht nur arbeitsaufwendig, sondern wird vor allem der notwendigen Ortsauflösung nicht gerecht.

In den vergangenen Jahren ist eine erhebliche Verbesserung der ortsaufgelösten Materialanalytik durch bildgebende analytische Methoden erreicht worden. Sie wurden so angepasst, dass die bei der Schädigung von Polymeren ablaufenden Teilreaktionen detailliert untersucht werden können. Grundsätzlich wird dazu Lichtmikroskopie mit einer spektroskopischen Technik gekoppelt, deren Wahl von der jeweiligen Fragestellung bestimmt wird.

Die Extraktion von Additiven und das Eindringen von Medien lassen sich gut mittels Infrarotmikroskopie verfolgen. Dabei wird ein vorgegebenes Areal auf der Probe gerastert und an jedem Punkt ein Spektrum aufgenommen. Je nach Messmethode sind Transmissions- und Reflexionsspektren möglich. Zur Auswertung wird aus den hyperspektralen Datensätzen die Intensität eines charakteristischen Wellenzahlbereiches über der Fläche in Konturplots abgebildet. Auf diese Weise ermöglicht IR-Mikroskopie eine Ortsauflösung bis in den Mikrometerbereich.

Ortsauflösungen im Nanometerbereich liefert die Ramanmikroskopie, so dass einzelne Sphärolithe von Polymeren und Additiv-Agglomerate einer eingehenden Untersuchung zugänglich werden. Hier ist die Ramanmikroskopie in der Lage, die flächige Verteilung interessierender Merkmale wie etwa der chemischen Zusammensetzung oder der Morphologie des Polymeren detailliert abzubilden. Die Längenskala im Nanometerbereich erlaubt es dabei Materialveränderungen bereits im Frühstadium zu erkennen. Auch Materialstrukturen in Fügenähten werden hierdurch einer eingehenden Bewertung zugänglich.

Mittels der TrueSurface Option wird vor der Messung das Oberflächenrelief der Probe aufgenommen. Während der mikroskopischen Messung wird dann der Fokus kontinuierlich angepasst. Hierdurch ist die Ramanmikroskopie in der Lage Proben mit unregelmäßiger Topografie, wie beispielsweise Bruchflächen, problemlos zu untersuchen. Auch dünne Beschichtungen können sehr detailliert betrachtet werden. Aufgrund ihres konfokalen Messprinzips ermöglicht die Ramanmikroskopie sogar eine dreidimensionale Analyse auf zerstörungsfreiem Weg, wie Abb. 2 zeigt.

Ein Teilschritt der Schädigung als Folge von Medienbelastung ist häufig auch die Extraktion von Füllstoffen und Pigmenten oder das Eindringen von ionischen Kontaminationen. Dies wird oft mittels der Kombination von Elektronenmikroskopie und energiedispersiver Röntgenspektroskopie (REM-EDX) untersucht. Eine weitere Technik dafür ist Röntgenfluoreszenzmikroskopie (µRFA). Dabei wird die Probe mittels eines motorisierten Probentischs im Elektronen- bzw. Röntgenstrahl platziert. Die eigentliche Messung erfolgt im Reflexionsmodus. Zur Auswertung werden die für die interessierenden chemischen Elemente charakteristischen Fluoreszenzlinien ausgewertet und ihre Intensität über einer Fläche als farbcodierter Konturplot dargestellt.

Eine Begleiterscheinung alterungsbedingter Materialveränderungen ist häufig die Rissbildung. Größe und Struktur von Rissen sind für die Beurteilung der Schädigung wichtig. Eine zerstörungsfreie Analyse der Risse im gesamten Bauteil erlaubt die Computertomografie (Abb. 3). Sie gestattet es, ganze Bauteile zu untersuchen. Die Röntgen-Computertomografie basiert auf materialspezifischer Absorption von Röntgenstrahlung. Ein beliebig geformtes Objekt kann damit schichtweise erfasst werden. Ausgewählte Querschnitte werden als Verteilung des röntgenografischen Absorptionskoeffizienten (röntgenografische „Dichte“) bildhaft als Matrix dargestellt. Aus diesen Einzelschichten lässt sich die Absorptionsstruktur eines Objekts vollständig dreidimensional rechnergestützt rekonstruieren. Im Zusammenspiel mit dem minimalen Aufwand zur Probenvorbereitung ist Computertomografie daher ein vielseitiges zerstörungsfreies Prüfverfahren am Fraunhofer LBF für Proben im Mikromaßstab (2 x 2 x 2 mm) bis hin zu vollständigen Bauteilen (750 x 600 mm).

Auf der Messe K 2016 in Düsseldorf, 19.-26.10.2016, beteiligt sich das Fraunhofer LBF in Halle 7 am Fraunhofer-Stand SC01.

Über den Bereich Kunststoffe des Fraunhofer LBF

Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette. Von der Polymerisation über das Compoundieren bis hin zur Lebensdaueranalyse von Kunststoffbauteilen werden Forschungsdienstleistungen aus einer Hand angeboten. Materialseitig liegt der Fokus auf Hochleistungsthermoplasten, Thermoplasten und Elastomeren sowie deren Verbünden. Umfassendes Know-how besteht im molekularanalytischen Fingerprinting von Kunststoffen unter Anwendung modernster Trennverfahren. In Kombination mit bildgebenden analytischen Techniken können Veränderungen an Kunststoffbauteilen begleitend zu Belastungstests frühzeitig erkannt und analysiert werden. Dies schließt auch eine Schadensanalytik unter Anwendung modernster Verfahren der Bildgebung und Molekularanalytik ein. Auf diesem Weg können sowohl die Authentizität von Materialprüfungen als auch die Eignung von Kunststoffen für ihren Einsatzzweck zuverlässig beurteilt werden.

Anke Zeidler-Finsel | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF
Weitere Informationen:
http://www.lbf.fraunhofer.de

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht COMPAMED 2016 vernetzte medizinische Systeme und Menschen
23.11.2016 | IVAM Fachverband für Mikrotechnik

nachricht Kompakter und individuell einstellbarer Schutz für alle Anwendungen
18.11.2016 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System

08.12.2016 | Physik Astronomie

Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten

08.12.2016 | Energie und Elektrotechnik

Oberleitungs-LKW: Option für einen umweltverträglichen Güterverkehr?

08.12.2016 | Verkehr Logistik