Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fraunhofer IWU auf der EuroBLECH 2014: Verbundwerkstoffe im Fokus

03.09.2014

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU zeigt zur EuroBLECH vom 21.-25. Oktober 2014 (Halle 11 / Stand C05) aktuelle Forschungsergebnisse aus dem Bereich der Blechbearbeitung. Im Fokus stehen zwei Weltneuheiten

Mit einer neuen Technologie für die Thermoumformung von Organoblechen können Faserverbundbauteile zukünftig wesentlich energieeffizienter und schneller hergestellt werden. Für die Produktion von Kunststoff-Metall-Hybridkomponenten gelang den Wissenschaftlern am IWU ein weiterer Durchbruch: Durch Verfahrenskombination lassen sich die Teilprozesse Tiefziehen, Spritzgießen und wirkmedienbasiertes Umformen in einer Produktionsanlage realisieren.


Oben: Organoblech aus Faserhalbzeug mit Verstärkungsfasern. Unten: In-situ-Erhitzung des Faserhalbzeugs mit integrierten Metallfasern (rot) in Kett- und/oder Schussrichtung.

Fraunhofer IWU


Metall/Kunststoff-Verbundbauteil

Fraunhofer IWU

Darüber hinaus werden anhand von Exponaten und Demonstratorbauteilen Projekte aus den Bereichen Dickblechclinchen, Magnesiumblechumformung, Innenhochdruckblechumformung sowie Werkzeugmaschinen und Automatisierung vorgestellt. Auch die im Mai 2014 eröffnete »E³-Forschungsfabrik Ressourceneffiziente Produktion« des Fraunhofer IWU ist ein Messethema.

Neue Technologie zur Thermoumformung von dreidimensionalen Faserverbundbauteilen

Faserverbundwerkstoffe wie GFK verfügen über herausragende Materialeigenschaften: Geringe Dichte und hohe Festigkeiten sind mit guten Korrosionseigenschaften und großer Designfreiheit bei Konstruktion und Verarbeitung verbunden – ideale Voraussetzungen für ein breites Anwendungsspektrum, insbesondere um Leichtbaupotentiale zu erschließen.

Durch gegenseitige Wechselwirkungen können funktionale Vorteile oder erwünschte Materialeigenschaften in einem Werkstoff kombiniert werden. Für die Herstellung von Faserverbundwerkstoffen benötigt man im Vergleich zu Metallen allerdings vergleichsweise viel Energie und Zeit.

Die Verbundmaterialien setzen sich aus einer bettenden Matrix sowie verstärkenden Fasern zusammen. Bisher kam als Matrix vornehmlich Duroplast zum Einsatz, dessen Verarbeitung ist allerdings sehr energieintensiv, das Material schlecht recyclingfähig und die Prozessschritte nur begrenzt automatisierbar. Daher richtete sich der Fokus zuletzt vermehrt auf Thermoplast, das gut wiederverwertbar, nahezu unbegrenzt lagerfähig und in kürzeren Zykluszeiten verarbeitbar ist.

Die hohe Schmelzviskosität ermöglicht allerdings keine Verarbeitung mit bereits bewährten Injektionsverfahren, wie z. B. dem RTM-Verfahren (Resin Transfer Moulding). Daher werden verstärkt flächige, vollständig imprägnierte und konsolidierte, endlosfaserverstärkte Organobleche als Plattenhalbzeuge verwendet.

Der Vorteil: Diese können mit etablierten Massenproduktionssystemen aus der Metallblechumformung verarbeitet werden. Typische Anwendungsgebiete sind energieabsorbierende, strukturelle oder sicherheitsrelevante Bauteile im Automobilbau, in der Luftfahrt, aber auch im Hochleistungssport und der Sicherheitstechnik. Der hohe Energiebedarf für die Erwärmung sowie der aufwendige Handlingvorgang standen einem großserientauglichen Einsatz bisher entgegen.

Am Fraunhofer IWU wurde im Rahmen eines vom Europäischen Fonds für regionale Entwicklung (EFRE) und des Freistaates Sachsen geförderten Projekts gemeinsam mit der WESOM Textil GmbH eine neue Technologie zur Thermoumformung von Organoblechen entwickelt, mit der die Prozesskette deutlich verkürzt und der Gesamtenergiebedarf signifikant reduziert werden können. Konventionell werden Organobleche zunächst aufgeheizt, dann zur Umformstation transportiert, anschließend umgeformt und nach einer Abkühlungszeit entformt.

Die Prozessoptimierung des Forschungsprojekts setzt an der notwendigen Erhitzung der Organobleche und dem aufwendigen Handlingvorgang des dann instabilen Halbzeugs an. Mithilfe von in den Verbundwerkstoff eingearbeiteten elektrisch leitfähigen Metallfasern kann der Aufheiz- und Umformvorgang energetisch effizienter, in einem Prozessschritt und in einer Produktionsanlage umgesetzt werden, der Zwischentransport entfällt komplett.

»Das Organoblech wird vor dem Umformprozess bereits in der Presse einer elektrischen Spannung ausgesetzt«, erklärt Danilo Mattheß, Wissenschaftlicher Mitarbeiter am Fraunhofer IWU. »Aufgrund von Widerstandsverlusten lässt sich so die Erwärmung des Materials einleiten und steuern.«

Gegenüber konventionellen Erwärmungsverfahren mit IR-Strahlern, Heißluftöfen und Kontaktheizungen kann der Energiebedarf deutlich gesenkt werden. Durch die neue Technologie entfällt der schwierige Handlingvorgang zwischen Aufheiz- und Umformstation. Überhitzungen des Organoblechs können vermieden werden. »Die kürzeren Taktzeiten, der geringere Energiebedarf und die gezielte Steuerbarkeit der Wärmeverteilung sind entscheidende Vorteile gegenüber der konventionellen Herstellung, die dem Thermoumformverfahren von dreidimensionalen Faserverbundbauteilen den Durchbruch verschaffen können«, führt Mattheß an.

Neue Verfahrenskombination für die Herstellung von Metall-Kunststoff-Verbundbauteilen

In der Automobilindustrie wird zunehmend an Leichtbaulösungen geforscht, die sowohl die Stabilität von Karosserieelementen gewährleisten als auch günstig herzustellen sind. Neben Aluminium oder Magnesiumlegierungen rücken insbesondere Kunststoffe in Form von Verbundstrukturen mit Metall in den Fokus. Die Kunststoffstrukturen im Bauteil sorgen für eine bessere Torsions- und Biegesteifigkeit, das Metall bietet die notwendige Festigkeit.

Neben der Gewichtsreduktion können mit dem zur Kunststoffverarbeitung genutzten Spitzgussverfahren besonders komplexe Strukturen hergestellt werden. Im Vergleich zu reinen Metallbauteilen liegt der Materialausnutzungsgrad bei Kunststoff zudem bei nahezu 100 Prozent. Die Hybridbauteile erlauben darüber hinaus die Integration von zusätzlicher Funktionalität bzw. die Aufteilung funktionaler Aufgaben in Bauteilen bzw. Karosseriekomponenten, wie die Einbringung von speziellen Elementen für Füge- und Montagezwecke.

Konventionell werden die Einzelkomponenten der Metall-Kunststoff-Hybridbauteile in voneinander getrennten Produktionsschritten hergestellt und nachträglich verbunden. Eine weitere Möglichkeit ist das An- oder Umspritzen des bereits hergestellten  Metallelements.

In beiden Fällen sind mehrere Prozessschritte auf unterschiedlichen  Produktionsanlagen notwendig. Am Fraunhofer IWU wurde gemeinsam mit der Technischen Universität Chemnitz eine Verfahrenskombination entwickelt, mit der Metall-Kunststoff-Verbundbauteile in einem Herstellungsschritt realisiert werden können. Das Versuchsbauteil aus Metall wird in einem ersten Teilschritt tiefgezogen.

Im Anschluss wird der Kunststoff eingespritzt. Der hohe Einspritzdruck konnte beim Versuchsbauteil zum Ausformen von Nebenformelementen genutzt werden. »Eine besondere Herausforderung lag in der Entwicklung eines geeigneten Werkzeugs«, erklärt André Albert, Gruppenleiter am Fraunhofer IWU. Zur Realisierung eines möglichst gleichmäßigen Anspritzvorgangs ist eine Beheizung des Werkzeugs notwendig. Das entwickelte Werkzeug wurde in eine Tiefzieh-Presse eingebaut und an ein Kunststoffeinspritzaggregat gekoppelt.

Im Verlauf von Versuchsreihen konnten der Prozess stabilisiert und erste Versuchsbauteile hergestellt werden. In einem nächsten Schritt soll das Verfahren auf Serienbauteile in der Automobilindustrie übertragen werden. Mögliche Anwendungsfälle sind Karosserieelemente wie Motorhauben, B-Säulen oder Dachquerträger. Mit der Verfahrenskombination lässt sich nicht nur weiteres Leichtbaupotential erschließen und der Materialausnutzungsgrad erhöhen:

»Das neue Fertigungsverfahren verkürzt die Prozesskette zur Herstellung solcher Hybidbauteile signifikant, was zu einer deutlichen Zeit- und Kosteneinsparung führt«, ergänzt Albert. Das Projekt entstand im Rahmen des Bundesexzellenzcluster »MERGE – Technologiefusion für multifunktionale Leichtbaustrukturen« und wurde von der Deutschen Forschungsgemeinschaft gefördert.

Weitere Informationen:

http://www.iwu.fraunhofer.de

Kommunikation | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht »Lasertechnik Live« auf dem International Laser Technology Congress AKL’18 in Aachen
23.02.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Empa zeigt «Tankstelle der Zukunft»
23.02.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics