Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flugzeugbau im Roboter-Takt

14.09.2011
Flugzeuge werden bislang in großen Montageanlagen zusammengebaut. Doch die Errichtung solcher Anlagen ist teuer und aufwändig.

Fraunhofer-Forscher haben daher eine flexible Montagestraße konzipiert, in der Roboter wie in der Automobilproduktion ans Werk gehen. Die Entwickler stellen ihr neues Produktionskonzept auf der Composites Europe in Stuttgart in Halle 4, Stand D03 vor. Gezeigt wird außerdem eine erste Komponente der künftigen Fertigungsstraße: ein leistungsfähiger Bauteilgreifer aus leichtem Carbon.


Dieser modulare carbonfaserverstärkte Leichtbaugreifer kann Flugzeugbauteile flexibel aufnehmen und handhaben – eine Entwicklung der Fraunhofer-Projektgruppe Fügen und Montieren FFM.
© Fraunhofer IFAM

Flugzeugbauteile sind gewaltig groß. Bereits einzelne Rumpfsegmente erreichen eine Länge von zehn Metern und mehr. Dennoch müssen sie hochpräzise im Jet verbaut werden: Bei der Montage tolerieren die Flugzeugbauer Abweichungen von maximal 0,2 Millimetern – und das bei Komponenten, die mehrere Tonnen wiegen. Um die gewichtigen Bauteile genau in Position zu bringen, setzen die Produzenten deshalb auf massige Fabrikationsanlagen, Montagezellen genannt. Das sind große Bögen, die wie Containerbrücken auf Stahlschienen und schweren Betonfundamenten über den Rumpf hinweg gleiten und beispielsweise Aluminiumteile nieten. Das Errichten solcher Montagezellen ist aufwändig und teuer. Zudem müssen sie für den nächsten Flugzeugtyp neu angefertigt werden, was die Bau- und Produktionskosten erhöht.

Gefragt sind daher Automatisierungskonzepte und -anlagen, die die Flugzeugmontage, insbesondere das hochpräzise Bohren und Fräsen sowie das Kleben, künftig flexibler, einfacher und wirtschaftlicher machen. Genau daran arbeiten Entwickler der im Großforschungszentrum »CFK Nord« in Stade tätigen Projektgruppe »Fügen und Montieren FFM« des Bremer Fraunhofer-Instituts für Fertigungstechnik und Angewandte Materialforschung IFAM. Ihnen schwebt eine völlig neue Montagephilosophie vor: Flugzeuge sollen künftig wie in der Automobilindustrie von einem Ensemble aus vielen kleinen Industrierobotern mechanisch bearbeitet und zunehmend auch geklebt werden. Statt wuchtiger Montagezellen haben die Entwickler um den Projektgruppenleiter Dr. Dirk Niermann eine entsprechende Anlage konzipiert: Die Rumpfsegmente und Seitenleitwerke oder Tragflächen gleiten dabei ähnlich wie in der Automobilproduktion auf einer Art Fließbandschlitten an den einarmigen Robotern vorbei, die nacheinander an verschiedenen Stationen kleben, bohren und fräsen. Natürlich muss auch eine solche Anlage auf einen neuen Flugzeugtyp abgestimmt werden. Der Installationsaufwand ist aber deutlich geringer.

Vom 27. bis 29. September werden die Wissenschaftler aus Stade auf der Composites Europe 2011 (Halle 4, Stand D03) in Stuttgart eine erste wichtige Komponente ihrer neuen Montagelinie vorstellen: einen Greifer, der flexibel Flugzeugbauteile mit verschiedenen Geometrien aufnehmen kann. »In einem Flugzeug werden Schalen mit unterschiedlichen Krümmungen verbaut, ein Greifsystem muss sich daran anpassen können«, sagt Niermann. Das wird durch beweglich angeordnete Saugnäpfe erreicht, die auf robusten Gelenken sitzen. Die Saugnäpfe ruhen auf einer Rahmenstruktur aus carbonfaserverstärktem Kunststoff (CFK), der stabil und deutlich leichter als Metall ist. Dank der geringen Masse können die Industrieroboter den Greifer und die Bauteile besonders genau positionieren.

Das Greiferprinzip erscheint zunächst simpel. Die Handhabung der Bauteile aber ist tatsächlich eine Herausforderung. Denn die Maße der großen Flugzeugbauteile weichen bis zu mehreren Millimetern vom Soll ab, wenn sie im Rumpf verbaut werden. Bisher passen erfahrene Techniker diese Elemente in der Montagezelle mit hohem zeitlichen Aufwand in den Rumpf ein. Zum Teil werden die Bauteile sogar minimal gestaucht oder leicht gebogen, damit am Ende das 0,2-Millimeter-Limit eingehalten wird. Die Roboter und der Greifer sollen das künftig ganz allein erledigen. »Wir entwickeln deshalb ein präzises Erkennungssystem, das die Bauteile während der Montage exakt vermisst«, sagt Niermann. Hinzu kommt eine leistungsstarke Software, die in Sekundenbruchteilen die Koordinaten ermittelt, nach denen der Roboter das Werkstück ausrichten muss, damit am Ende alles passt. Und noch eine Herausforderung gibt es. Der klassische Flugzeugwerkstoff Aluminium wird mehr und mehr durch CFK ersetzt. CFK-Bauteile aber geben beim Einbau – anders als ein Alu-Blech – nicht nach. Sie müssen daher teils unter Spannung montiert werden. Techniker haben ein Gefühl dafür entwickelt, wie groß diese Spannung sein darf. Sie können die CFK-Komponenten entsprechend manuell montieren. Der Roboter hingegen muss auch das noch lernen.

Niermann und seine Kollegen aber sind sich sicher, dass eine erste Demonstrationsanlage in etwa drei Jahren zur Verfügung stehen wird. Der Greifer ist bereits während der Composites Europe zu sehen. Die Fraunhofer-Projektgruppe FFM stellt außerdem ihr neues Gesamtkonzept der Roboterfertigung für den Flugzeugbau vor.

Sarah Ernst | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010-2011/21/flugzeugbau-montage-bauleitgreifer.jsp

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Digitalisierung von HR-Prozessen – tisoware auf der Personal Nord und Süd
21.03.2017 | tisoware Gesellschaft für Zeitwirtschaft mbH

nachricht Hochauflösende Laserstrukturierung dünner Schichten auf der LOPEC 2017
21.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie