Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diodenlaser-Module für die Spurenanalytik und für Quantensensoren im Weltraum

17.03.2014

Anlässlich der Fachmesse Laser Optics in Berlin präsentiert das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH), unter dem Funkturm ausgewählte Lasermodule. Diese stellt es vom 18. bis 20. März 2014 an Stand 405 in Halle 12 vor.

Das FBH zeigt u.a. einen Diodenlaser für die Raman-Spektroskopie, der alternierend Licht auf zwei verschiedenen Wellenlängen emittiert. So kann das Raman-Signal auch bei starkem Störlicht gemessen und damit die Nachweisgrenze gegenüber der herkömmlichen Raman-Spektroskopie verbessert werden.


Mikrointegrierter Master-Oszillator-Power-Amplifier für die Präzisionsspektroskopie.

Bild: FBH/schurian.com


Zwei-Wellenlängen-Diodenlaser

Bild: FBH

Außerdem präsentiert das Institut ein Diodenlaser-Modul für den Betrieb von Quantensensoren, die etwa für Präzisionszeitmessungen benötigt werden. Es erfüllt die hohen optischen Anforderungen für den Betrieb in Atomuhren und ist etwa um den Faktor 100 kleiner als herkömmliche Lasersysteme.

Das FBH ist auch auf dem parallel stattfindenden wissenschaftlich-technischen Kongress der Optical Society of America vertreten. Zudem stellen die vom Institut koordinierten Initiativen „Advanced UV for Life“ und „Berlin WideBaSe“ auf dem Gemeinschaftsstand Berlin-Brandenburg Halle 14.1, Stand 202 aus. 

Zwei-Wellenlängen-Diodenlaser für portable Raman-Analytiksysteme

Das FBH stellt einen neuartigen Diodenlaser für SERDS (Shifted Excitation Raman Difference Spectroscopy) vor. Mit dieser Technologie lassen sich viele Substanzen präzise analysieren. Die Besonderheit des FBH-Chips ist, dass er alternierend Licht auf zwei verschiedenen Wellenlängen emittiert. Diese werden über separat ansteuerbare Sektionen im Laser und Gitter, die in den Halbleiterchip implementiert sind, festgelegt.

Dadurch ist es möglich, die extrem schwachen Raman-Signale auch bei starkem Störlicht – wie Tageslicht, Zimmerbeleuchtung oder Fluoreszenz von Proben – messen zu können. Bestrahlt man nämlich eine Probe auf zwei Wellenlängen, so folgen die Raman-Linien der Anregungswellenlänge, während sich die Störquellen spektral nicht verändern. Auf diese Weise lassen sich die Raman-Signale vom Störlicht unterscheiden. Die Nachweisgrenze gegenüber der herkömmlichen Raman-Spektroskopie kann so um mehr als eine Größenordnung verbessert werden.

Eine potenzielle Anwendung des Zwei-Wellenlängen-Diodenlasers sind miniaturisierte, portable Lasermesssysteme für die Raman-Spektroskopie. Sie eignen sich, um biologische Proben wie etwa Fleisch, Früchte oder Blätter zu untersuchen und können auch für die medizinische Diagnostik an Haut genutzt werden. 

Kompakte und robuste Diodenlaser-Module für Quantensensoren im Weltraum

Quantensensoren, die auf kalten Atomen basieren, gewinnen für verschiedene Anwendungen an Bedeutung, wie etwa für Präzisionszeitmessung, für die Navigation oder fundamentalphysikalische Fragestellungen. Um derartige Quantensensoren zu betreiben, ist bisher ein komplettes optisches Labor erforderlich – für den Außeneinsatz oder gar Weltraumanwendungen gab es bis dato keine geeigneten Geräte.

Seit mehreren Jahren arbeitet das FBH an hybrid-integrierten, sehr robusten Diodenlaser-Modulen, deren Formfaktor mit etwa 50 x 25 x 15 mm(hoch)3 etwa um den Faktor 100 kleiner ist als der herkömmlicher Lasersysteme. Die Module integrieren Halbleiterlaserchips und Mikro-linsen. Sie erfüllen die hohen Anforderungen hinsichtlich spektraler Stabilität und Reinheit – die Linienbreite für optische Atomuhren muss bis in den Bereich < 1 Hz reduziert werden.

So hat das FBH u.a. Lasermodule für die Bose-Einstein-Kondensation und Atominterferometrie mit Ausgangsleistungen von 1 W entwickelt. Sie haben mechanische Stresstests bis 20 gRMS und Beschleunigungstests bis 50 g erfolgreich absolviert.

Kontakt
Petra Immerz, M.A.
Referentin Kommunikation & Public Relations
Tel.: +49 (0)30 / 6392-2626
Fax: +49 (0)30 / 6392-2602
E-Mail: petra.immerz@fbh-berlin.de

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin

Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesellschaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizintechnik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satellitenkommunikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikrowellenplasmaquellen mit Niederspannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 270 Mitarbeiter und hat einen Etat von 22 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.fbh-berlin.de
http://www.fbh-berlin.de/presse/bilderservice - weitere Pressebilder. Bitte beachten Sie das Copyright.

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Fraunhofer IDMT auf der Prolight + Sound 2017: Objektbasierte Tonmischung wird noch einfacher!
03.04.2017 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht AERO 2017: Neuartiger elektrischer Antrieb für ökoeffizientes Fliegen mit Motorsegler
31.03.2017 | Technische Hochschule Wildau

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten