Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Besser, schneller, billiger: Das Geschäft mit der Sonne

08.08.2011
Die Energiewende ist beschlossen, Deutschland braucht mehr grüne Energie.

In Hamburg dreht sich vom 5. bis 9. September alles um unseren größten Energielieferanten, die Sonne. Fraunhofer-Forscher stellen auf der EU PVSEC, der European Photovoltaic Solar Energy Conference, in Halle B4G, Stand C12, neue Methoden vor, mit denen man Solarzellen billiger und effizienter machen kann.


Laserbehandelte Solarzelle vor Aufbringen der Metallkontakte. Fraunhofer ILT

Auf vielen Hausdächern, besonders in Süddeutschland, glänzen inzwischen die schwarzen Platten. Oft sind es Solarkollektoren, die für Heißwasser sorgen, immer öfter auch Photovoltaik-Anlagen, die das Sonnenlicht direkt in Strom umwandeln. Aber bisher kommen nur etwa 2 Prozent des Stroms in Deutschland aus Solarenergie, denn noch sind Solarzellen vor allem in der Produktion teuer und aufwändig.

Wissenschaftler der Fraunhofer-Gesellschaft entwickeln innovative Herstellungsverfahren, um das zu ändern. Vor allem Laser eröffnen in der Fertigung ganz neue Möglichkeiten. »Die Lasertechnik ermöglicht kontaktloses, präzises und schnelles Bearbeiten«, erklärt Dr. Malte Schulz-Ruhtenberg vom Fraunhofer-Institut für Lasertechnik ILT in Aachen den Hauptvorteil. So lassen sich bessere Solarzellen kostengünstiger produzieren.

Laserverfahren hoch im Kurs
Ein Beispiel ist das Hochrate-Laser-Bohren, welches sehr präzise und schnell kleine Löcher in Solarzellen erzeugt. Wozu man das braucht? Eine klassische Solarzelle erzeugt Strom durch den photoelektrischen Effekt. Sie besteht aus mehreren leitenden und halbleitenden Schichten. Fällt Licht auf die Zelle, werden negative Ladungsträger aus ihrer Bindung gelöst und es fließt elektrischer Strom. Bisher befinden sich auf Vorder- und Rückseite der Zelle die Kontakte, um den so erzeugten Strom abzutransportieren. Wenn alle Kontakte an der Rückseite verlegt werden können, wo sie keine Schatten werfen, steigt der Energiegewinn. Die Löcher schaffen die Voraussetzungen für diesen Ansatz, der als »Emitter-Wrap-Through«, kurz EWT, bezeichnet wird. Um noch höhere Geschwindigkeiten und damit höheren Durchsatz zu erzielen, können spezielle Polygon-Scanner eingesetzt werden. Bei diesen Laser-Scannern lenken rotierende Polygon-Spiegel extrem schnell aufeinanderfolgende Laserpulse gezielt ab und sind so in der Lage sehr schnell große Flächen zu bearbeiten. »Das ist eine vielversprechende Technologie, die für viele Laserprozesse eingesetzt werden kann«, so Schulz-Ruhtenberg.
Genau und schonend fürs Material
Neben der Geschwindigkeit spielt auch die schonende Arbeitsweise der Laser eine große Rolle in der Solartechnik, denn die Zellen und Wafer, also die Grundelemente einer Zelle, sind empfindlich. Laserstrahlen sind aber so fein dosier- und kontrollierbar, dass die Zellen kaum belastet werden. Deshalb nutzten die Fraunhofer-Forscher sie für fast alles: um zu bohren, zu schmelzen, zu schneiden oder auch zu löten. Zum Beispiel werden Ultrakurzpuls-Laser eingesetzt um Vorder- und Rückseite einer Solarzelle voneinander zu isolieren. Sie arbeiten schonender als andere Methoden und das ist wichtig, denn ein großer Anteil der Kosten geht auf Schäden und Bruch in der Produktion zurück.
Roboter im Test
Schäden verursachen häufig auch die Handhabungsroboter, die in unterschiedlichen Varianten von allen Herstellern eingesetzt werden. Sie sollen möglichst schnell und genau arbeiten, aber ohne die empfindlichen Teile zu beschädigen − das senkt die Kosten. Am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA in Stuttgart arbeiten Forscher daran, die automatisierte Handhabung von Wafern und Solarzellen zu verbessern. »In unserem Test- und Demonstrationszentrum versuchen wir, die Handhabung und Automatisierung in der Photovoltaik nachzustellen und so zu optimieren«, erklärt Roland Wertz, der Verantwortliche beim IPA. Es dient dabei als Schnittstelle zwischen industrieller Fertigung und Forschungsdienstleistung im Bereich Automatisierungslösungen.So werden unter möglichst realen Bedingungen alle Einflüsse und Parameter registriert, die sich zum Beispiel auf die Genauigkeit und Geschwindigkeit verschiedener Greifsysteme auswirken.

Dabei hilft der Roboter ABB IRP 360, auch FlexPicker genannt, der auch am Fraunhofer-Stand ausgestellt wird. Er wird als Manipulator zusammen mit dem eigentlichen Greifer für Experimente genutzt. So analysieren und bewerten die Wissenschaftler Produkte unterschiedlicher Hersteller und mit verschiedenen Wirkprinzipien. Denn jede konkrete Anwendung hat eigene Anforderungen und verlangt damit nach eigener optimierter Handhabung.

Weniger ist mehr
Aber nicht nur in der Produktion wird gespart und optimiert, sondern auch beim Material. Nicht mehr als unbedingt nötig − das ist das Prinzip von Dünnschicht-Solarzellen. Sie bestehen meist aus einem preiswerten Träger, auf den das elektrisch aktive Material als ultradünne Schicht aufgebracht wird. Um Dünnschichtsolarzellen qualitativ hochwertig und dabei kostengünstig herstellen zu können, hat das Fraunhofer-Institut für Schicht- und Oberflächentechnik IST in Braunschweig verschiedene Verfahren für jeden einzelnen Produktionsschritt entwickelt.

Die Halbleiterschichten, das Herz der Zelle, werden zum Beispiel mit dem Hot-Wire-CVD-Verfahren hergestellt. »Der Vorteil gegenüber herkömmlichen Verfahren ist die schonende Form der Schichtherstellung«, erklärt Dr. Volker Sittinger vom IST. Bei herkömmlichen plasmaaktivierten CVD-Verfahren ist das Material während der Beschichtung dem Beschuss mit hochenergetische Teilchen ausgesetzt. Anders bei der Hot-Wire-CVD: Dort werden die schichtbildenden Gase nicht in Plasma, sondern an heißen Drähten angeregt. So entstehen auf schonende Weise hochwertige Schichten. Außerdem lässt sich das für die Herstellung nötige Silangas besser nutzen. »Wir wandeln bei der Hot-Wire-CVD bis zu 90 Prozent der eingesetzten Gase in Schichtmaterial um und erreichen dadurch auch höhere Beschichtungsraten als bei herkömmlichen Prozessen«, sagt Sittinger.

Für die Kontaktschichten auf Front- und Rückseite gibt es seit Kurzem die C²-Beschichtungstechnologie (Cylindrical Magnetron Co-Sputtering). Sie ermöglicht es, die Materialzusammensetzung während der Beschichtung zu variieren. Und es soll noch dünner gehen. Mit einem neuen Typ dreidimensional aufgebauter Solarzellen könnten wenige Nanometer dünne Schichten möglich sein. Das geht nur mit konturgenauer Abscheidung der Schichten, aber auch dafür gibt es eine Methode: ALD, das steht für Atomlagenabscheidung, aus dem Bereich der Nanotechnologie.

Solarzellen müssen also nicht mehr so teuer sein. Denn neue Technologien könnten die Solarenergie einen großen Schritt nach vorne bringen.

Roland Wertz | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010-2011/20/geschaeft-mit-der-sonne.jsp

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Medica 2017 – TU Kaiserslautern präsentiert Fortschritte in der Medizintechnologie
20.10.2017 | Technische Universität Kaiserslautern

nachricht Biokunststoffe könnten auch in Traktoren die Richtung angeben
18.10.2017 | Hochschule Hannover

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie