Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Feste Verbindung

06.11.2007
Ärgerlich – schon wieder muss die Brille zum Optiker! Ein neues Verfahren beschert randlosen Brillen ein längeres Leben: Laser verbinden Metallbügel und Kunststoffgläser optimal miteinander. Auf der Messe Productronica stellen Forscher die Technik vor.

Brillenträger kennen das Problem: Man stößt irgendwo an oder zieht ohne Nachzudenken den Pullover über den Kopf – und schon ist es passiert. Vor allem bei randlosen Kunststoffbrillen lockern sich die Metallbügel leicht. Abhilfe verspricht LIFTEC, ein neues, bereits zum Patent angemeldetes Verfahren aus dem Fraunhofer-Institut für Lasertechnik ILT in Aachen.

Es macht Kunststoff-Metall-Verbindungen – etwa Brillengläser und Bügel – stabiler als bisher. »Mit einem Laser erwärmen wir die Stirnseite des Metallstifts, der den Bügel an den Gläsern befestigt. Die Laserstrahlung durchdringt das transparente Kunststoffglas, ohne es zu beschädigen. Sie trifft auf den Metallstift und erhitzt diesen auf eine Temperatur, die höher ist als die Schmelztemperatur des Kunststoffs.

Der Metallstift strahlt die Wärme ab und schmilzt das umgebende Material. Unter mechanischem Druck wird das metallische Bauteil in den Kunststoff gepresst. Nach dem Abküh-len entsteht eine formschlüssige Verbindung«, erklärt Dipl.-Ing. Jens Holtkamp vom ILT den Prozess. Die Steckverbindung, die den Bügel bisher am Brillenglas befestigt und die an den Verschluss eines Ohrrings erinnert, wird so überflüssig.

... mehr zu:
»Kunststoff »Metall

Um Metall und Kunststoff genügend fest miteinander zu verbinden, kommt es auch auf die Form an: Die Forscher versehen das Metall – etwa den Stift der Brillenfassung – mit einer Verdickung, einer Nut oder einer Bohrung, so verbinden sich Kunststoff und Metall rutschfest miteinander. »Zudem messen wir die Wärme, die der Metallstift abstrahlt, mit einem Pyrometer. So können wir die erforderliche Fügetemperatur je nach Werkstoff exakt regeln. Der Vorteil: Die Komponenten werden nicht überhitzt, es entstehen somit kaum Spannungen«, erläutert der Experte.

Nicht nur Metalle, auch keramische Werkstoffe können durch das neue Verfahren mit Kunststoffen verbunden werden. Ebenso sind Kunststoff-Kunststoff-Verbindungen möglich, sofern eine Komponente einen höheren Schmelzpunkt hat, etwa Epoxidharz oder Teflon. Die Möglichkeiten von LIFTEC sind vielfältig: »Bei den Brillen ergeben sich mit dem neuen Verfahren auch für die Designer völlig neue Möglichkeiten – sie können den Bügel an beliebigen Stellen und auf verschiedene Weisen anbringen«, sagt Holtkamp. »Weitere Anwendungen sind Scharniere in Mobiltelefonen und das Fügen von Kunststofffenstern oder -fassaden mit Metallrahmen, die hochfest und dicht werden.« Auf der Messe Productronica vom 13. bis 16. November in München stellen die Forscher das Verfahren vor (Halle B5, Stand 355).

Jens Holtkamp | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Berichte zu: Kunststoff Metall

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht OLED auf hauchdünnem Edelstahl
21.09.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Die Chancen der Digitalisierung für das Betriebliche Gesundheitsmanagement: vitaliberty auf der Zukunft Personal 2017
19.09.2017 | vitaliberty GmbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie