Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hannover Messe: Spiegel aus Jena ermöglicht Laser extrem hoher Leistung

16.04.2002


SESAM öffnet Türen zu neuen Anwendungen

Der Physiker Prof. Wolfgang Richter von der Uni Jena stellt auf der Hannover Messe vom 15. bis 20. April einen neuartigen Laserspiegel aus, der nach dem SESAM-Prinzip arbeitet, das vor etwa zehn Jahren in den USA erfunden wurde (SESAM - Semiconductor Saturable Absorber Mirror - Sättigbarer Absorberspiegel aus Halbleitermaterial). Durch eine spezielle Anordnung der Schichten dieser SESAMs kann deren Lebensdauer erheblich vergrößert werden. Mit SESAM-Spiegeln lassen sich besonders einfache, selbst startende Puls-Laser aufbauen. Sie können kurze Lichtblitze von etwa einer Billiardstel Sekunde Dauer (Fachwort: Pikosekunde) und etwa 1 GigaWatt Leistung aussenden. Laser mit solchen Eigenschaften werden immer wichtiger: In der Chemie und Biologie lassen sich damit superschnelle Vorgänge beobachten, sie verbessern die Kommunikationstechnik, man kann mit ihnen Entfernungen messen, äußerst präzise Materialen bearbeiten oder sichtbares Licht für Leuchtanzeigen erzeugen.

Ein Laser besteht aus einem aktiven Lasermaterial, dem von außen Energie meist in Form von Licht zugeführt wird. Oft ist dieses Material ein Kristall - ein Festkörper, wie die Physiker sagen - doch gibt es auch eine Fülle anderer Lasermaterialien, von Gasen über Flüssigkeiten bis zu Halbleitern. Die eingestrahlte Lichtenergie regt das aktive Lasermaterial zum Leuchten an. Dieses Laserlicht wandert zwischen zwei Spiegeln am vorderen und hinteren Ende des Lasermaterials hin und her und regt dabei die Atome an, weiteres Licht auszusenden: Eine gegenseitige lawinenartige Lichtverstärkung setzt ein. Damit das Licht aus dem Laser austreten kann, ist einer der Spiegel teildurchlässig, während der andere, der 100-Prozent-Spiegel, das gesamte auf ihn treffende Licht zurückwirft. Wird dieser Spiegel durch einen SESAM ersetzt, strahlt der Laser nicht fortlaufend, sondern sendet kurze Lichtpulse hoher Leistung in einer regelmäßigen Folge aus.

"So ist ein SESAM-Spiegel im Prinzip aufgebaut: Mehr als 50 solcher hauchdünnen Halbleiterschichten, die das Licht unterschiedlich stark brechen, liegen übereinander. Das Geheimnis liegt aber in einer weiteren Schicht, der Absorberschicht."

Der Trick dabei: Der SESAM-Spiegel besitzt mehr als 50 übereinander angeordnete Schichten, die abwechselnd aus den Halbleitern Aluminiumarsenid (AlAs) und Galliumarsenid (GaAs) bestehen, sowie eine weitere Schicht aus Indiumgalliumarsenid (InGaAs), die einen Teil des Lichts absorbiert (verschluckt). Jede dieser Schichten ist nur etwa den dreizehntausendsten Teil eines Millimeters dick - ein Haar ist rund 1000mal dicker. Dabei ist die Schichtdicke genau auf den jeweiligen Laser abgestimmt: Sie beträgt exakt ein Viertel der Wellenlänge im Halbleitermaterial. Dieser Spiegel ersetzt den bisherigen 100-Prozent-Spiegel. Die einzelnen Schichten werden mit einem Verfahren aufgebracht, das sich Molekularstrahl-Epitaxie nennt. Auf diese Weise lassen sich Laserspiegel nach Maß herstellen.

"SESAM-Spiegel: Die hier als "Bragg-mirror" bezeichnete Schicht (blau) entspricht den mehr als 50 Halbleiterschichten. Die rote Schicht ist die Absorberschicht aus InGaAs. Sie verschluckt einen kleinen Teil des Lichts an der Vorderseite einer Welle."

AlAs und GaAs brechen das Licht unterschiedlich stark. An jeder der Grenzen zwischen den Schichten wird das Licht zurückgeworfen. Die zurückgeworfenen Lichtwellen überlagern sich dabei, so dass der Wellenberg höher wird - das Licht wird intensiver. Entscheidend ist aber die Absorberschicht aus InGaAs. Sie bewirkt, dass ein kleiner Teil des Lichts an der Vorderseite einer Welle verschluckt wird, also etwas Energie im Spiegel "hängen" bleibt. Dies geschieht so lange, bis die Absorberschicht gesättigt ist. Mit anderen Worten: Je mehr die Lichtintensität steigt, desto weniger Licht wird absorbiert.

Der Vorteil des SESAM-Spiegels liegt darin, dass ein wildes sich-Aufschwingen der Wellenberge verhindert wird. Dadurch arbeitet der Laser stabil, die einzelnen Laserpulse sind zeitlich geordnet, die gesamte Energie wandert in einen kurzen Puls.

Mittlerweile vermarktet Prof. Richter seine Spiegel in einer eigenen kleinen Firma - der Wolfgang Richter Optoelectronics in Weimar. Die Firma bietet SESAMs für Wellenlängen zwischen 870 und 1100 Nanometer an, wobei die Genauigkeit besser als ein Prozent ist. Im gesättigten Zustand liegt ihre Reflexion bei über 99,7 Prozent, die sättigbare Absorption zwischen 0,6 und 6 Prozent. Die Spiegel sind in der Regel 5 x 5 Millimeter groß, doch sind auch andere Größen möglich.

Weitere Informationen: Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik/AG Physik dünner Schichten, Max-Wien-Platz 1, 07743 Jena, Prof. Dr. Wolfgang Richter, Tel. 0 36 41 / 94 74 40, Fax 036 41 / 94 74 42, E-Mail: richter@pinet.uni-jena.de oder vom 15. bis 20. April 2002 auf der Hannover Messe, Halle 18, 1. Obergeschoss, auf dem Stand O 15, "Forschungsland Thüringen". Noch mehr Fragen beantworten Ihnen die Internetseiten der Arbeitsgruppe Physik dünner Schichten  oder die Seiten der Firma Wolfgang Richter Optoelectronics 

Hubert J. Gieß | idw
Weitere Informationen:
http://www.physik.uni-jena.de/~layer/
http://www.wroe.de/

Weitere Berichte zu: SESAM

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Intelligente Filter für innovative Leichtbaukonstruktionen
08.12.2016 | Technische Universität Bergakademie Freiberg

nachricht Mobile Learning und intelligente Contentlösungen im Fokus
08.12.2016 | time4you GmbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie