Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hannover Messe: Spiegel aus Jena ermöglicht Laser extrem hoher Leistung

16.04.2002


SESAM öffnet Türen zu neuen Anwendungen

Der Physiker Prof. Wolfgang Richter von der Uni Jena stellt auf der Hannover Messe vom 15. bis 20. April einen neuartigen Laserspiegel aus, der nach dem SESAM-Prinzip arbeitet, das vor etwa zehn Jahren in den USA erfunden wurde (SESAM - Semiconductor Saturable Absorber Mirror - Sättigbarer Absorberspiegel aus Halbleitermaterial). Durch eine spezielle Anordnung der Schichten dieser SESAMs kann deren Lebensdauer erheblich vergrößert werden. Mit SESAM-Spiegeln lassen sich besonders einfache, selbst startende Puls-Laser aufbauen. Sie können kurze Lichtblitze von etwa einer Billiardstel Sekunde Dauer (Fachwort: Pikosekunde) und etwa 1 GigaWatt Leistung aussenden. Laser mit solchen Eigenschaften werden immer wichtiger: In der Chemie und Biologie lassen sich damit superschnelle Vorgänge beobachten, sie verbessern die Kommunikationstechnik, man kann mit ihnen Entfernungen messen, äußerst präzise Materialen bearbeiten oder sichtbares Licht für Leuchtanzeigen erzeugen.

Ein Laser besteht aus einem aktiven Lasermaterial, dem von außen Energie meist in Form von Licht zugeführt wird. Oft ist dieses Material ein Kristall - ein Festkörper, wie die Physiker sagen - doch gibt es auch eine Fülle anderer Lasermaterialien, von Gasen über Flüssigkeiten bis zu Halbleitern. Die eingestrahlte Lichtenergie regt das aktive Lasermaterial zum Leuchten an. Dieses Laserlicht wandert zwischen zwei Spiegeln am vorderen und hinteren Ende des Lasermaterials hin und her und regt dabei die Atome an, weiteres Licht auszusenden: Eine gegenseitige lawinenartige Lichtverstärkung setzt ein. Damit das Licht aus dem Laser austreten kann, ist einer der Spiegel teildurchlässig, während der andere, der 100-Prozent-Spiegel, das gesamte auf ihn treffende Licht zurückwirft. Wird dieser Spiegel durch einen SESAM ersetzt, strahlt der Laser nicht fortlaufend, sondern sendet kurze Lichtpulse hoher Leistung in einer regelmäßigen Folge aus.

"So ist ein SESAM-Spiegel im Prinzip aufgebaut: Mehr als 50 solcher hauchdünnen Halbleiterschichten, die das Licht unterschiedlich stark brechen, liegen übereinander. Das Geheimnis liegt aber in einer weiteren Schicht, der Absorberschicht."

Der Trick dabei: Der SESAM-Spiegel besitzt mehr als 50 übereinander angeordnete Schichten, die abwechselnd aus den Halbleitern Aluminiumarsenid (AlAs) und Galliumarsenid (GaAs) bestehen, sowie eine weitere Schicht aus Indiumgalliumarsenid (InGaAs), die einen Teil des Lichts absorbiert (verschluckt). Jede dieser Schichten ist nur etwa den dreizehntausendsten Teil eines Millimeters dick - ein Haar ist rund 1000mal dicker. Dabei ist die Schichtdicke genau auf den jeweiligen Laser abgestimmt: Sie beträgt exakt ein Viertel der Wellenlänge im Halbleitermaterial. Dieser Spiegel ersetzt den bisherigen 100-Prozent-Spiegel. Die einzelnen Schichten werden mit einem Verfahren aufgebracht, das sich Molekularstrahl-Epitaxie nennt. Auf diese Weise lassen sich Laserspiegel nach Maß herstellen.

"SESAM-Spiegel: Die hier als "Bragg-mirror" bezeichnete Schicht (blau) entspricht den mehr als 50 Halbleiterschichten. Die rote Schicht ist die Absorberschicht aus InGaAs. Sie verschluckt einen kleinen Teil des Lichts an der Vorderseite einer Welle."

AlAs und GaAs brechen das Licht unterschiedlich stark. An jeder der Grenzen zwischen den Schichten wird das Licht zurückgeworfen. Die zurückgeworfenen Lichtwellen überlagern sich dabei, so dass der Wellenberg höher wird - das Licht wird intensiver. Entscheidend ist aber die Absorberschicht aus InGaAs. Sie bewirkt, dass ein kleiner Teil des Lichts an der Vorderseite einer Welle verschluckt wird, also etwas Energie im Spiegel "hängen" bleibt. Dies geschieht so lange, bis die Absorberschicht gesättigt ist. Mit anderen Worten: Je mehr die Lichtintensität steigt, desto weniger Licht wird absorbiert.

Der Vorteil des SESAM-Spiegels liegt darin, dass ein wildes sich-Aufschwingen der Wellenberge verhindert wird. Dadurch arbeitet der Laser stabil, die einzelnen Laserpulse sind zeitlich geordnet, die gesamte Energie wandert in einen kurzen Puls.

Mittlerweile vermarktet Prof. Richter seine Spiegel in einer eigenen kleinen Firma - der Wolfgang Richter Optoelectronics in Weimar. Die Firma bietet SESAMs für Wellenlängen zwischen 870 und 1100 Nanometer an, wobei die Genauigkeit besser als ein Prozent ist. Im gesättigten Zustand liegt ihre Reflexion bei über 99,7 Prozent, die sättigbare Absorption zwischen 0,6 und 6 Prozent. Die Spiegel sind in der Regel 5 x 5 Millimeter groß, doch sind auch andere Größen möglich.

Weitere Informationen: Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik/AG Physik dünner Schichten, Max-Wien-Platz 1, 07743 Jena, Prof. Dr. Wolfgang Richter, Tel. 0 36 41 / 94 74 40, Fax 036 41 / 94 74 42, E-Mail: richter@pinet.uni-jena.de oder vom 15. bis 20. April 2002 auf der Hannover Messe, Halle 18, 1. Obergeschoss, auf dem Stand O 15, "Forschungsland Thüringen". Noch mehr Fragen beantworten Ihnen die Internetseiten der Arbeitsgruppe Physik dünner Schichten  oder die Seiten der Firma Wolfgang Richter Optoelectronics 

Hubert J. Gieß | idw
Weitere Informationen:
http://www.physik.uni-jena.de/~layer/
http://www.wroe.de/

Weitere Berichte zu: SESAM

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht OLED-Produktionsanlage aus einer Hand
29.03.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Digitalisierung von HR-Prozessen – tisoware auf der Personal Nord und Süd
21.03.2017 | tisoware Gesellschaft für Zeitwirtschaft mbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE