Kleine Strukturen auf großen Flächen

Flache Bildschirme sind gefragt: In Notebooks, Handys, Digitalkameras und PDAs gehören sie schon zum Alltag. Und im Vorfeld der Fußball-Weltmeisterschaft waren Fernseher mit Flachbildschirmen der Verkaufsschlager. Mikrostrukturen verhindern störende Spiegelungen und sorgen für eine gute Ausleuchtung. Doch wie lassen sich die nur wenige Mikrometer kleine Strukturen auf ein Display aufbringen? Die Fertigung erfolgt meist in mehreren Schritten. Zunächst wird ein Master, eine Art Stempel, gefertigt. Diese Urform wird dann in einem galvanischen Prozess oder Spritzgussverfahren abgeformt. Für die Produktion von hochwertigen Flachbildschirmen braucht die Industrie jedoch immer größere Master mit mikrostrukturierten optischen Oberflächen. Trotz der großen Nachfrage gibt es bislang noch keine geeigneten Verfahren, um solche Bauteile in der gewünschten Größe zu fertigen. Ingenieure des Fraunhofer-Instituts für Produktionstechnologien IPT in Aachen haben ein Maschinensystem zur Mikrostrukturierung großer optischer Oberflächen mittels monokristalliner Diamantwerkzeuge entwickelt.

Die besondere technologische Herausforderung ist es, Strukturen mit nanometergenauen Konturen im Quadratmetermaßstab herzustellen. Bei der Generierung der Masterstruktur müssen Millionen sich wiederholender Strukturen unterbrechungs- und defektfrei gefertigt werden. »Das stellt höchste Anforderungen an die Maschinen- und Prozesstechnologie«, erläutert Christian Wenzel vom IPT. Am Institut haben die Ingenieure ein neues Ultrapräzisions-Bearbeitungssystem aufgebaut. Das System vereint die Bearbeitungsverfahren Drehen, Fräsen und Hobeln, um bis zu einem Quadratmeter große Bauteile in höchster Qualität zu fertigen.

Die ultrapräzise Fertigung optischer Oberflächen erfordert einen besonderen Aufbau des Maschinensystems – das Maschinenbett, die Führungen, Antriebe und das Messsystem müssen extrem fein abgestimmt sein. In dem Ultrapräzisions-Bearbeitungszentrum gewährleisten ein Naturgranitbett, hydrostatische Führungen und reibungslose Direktantriebe kombiniert mit hochauflösenden optischen Encodern Geradheitsabweichungen unter 2 µm/m und Positioniergenauigkeiten der Schlitten von 3 µm. So lassen sich reproduzierbare Oberflächengüten unterhalb von 10 nm Ra. Rauheit erreichen. Die Formgenauigkeit auf einer Fläche von 100 x 100 mm2 liegt im Submikrometerbereich.

Im Bearbeitungszentrum werden bereits großflächige, optische Bauteile für Industrie- und Forschungszwecke gefertigt. Typische Anwendungen in der Optikindustrie sind großflächige Bauteile mit optischen Gittern sowie Linsenarrays, die das Licht unterschiedlicher Wellenlängen gezielt beugen und brechen oder Bauteile mit reflektierenden Oberflächen.

Wissenschaftler des Fraunhofer-Instituts für Solare Energiesysteme ISE in Freiburg setzen ein anderes Verfahren ein, um große Flächen mit feinsten Strukturen zu versehen. Mit der Interferenz-Lithographie lassen sich Mikrostrukturen mit genau definierten optischen Funktionen großflächig homogen herstellen – Billionen von Detailstrukturen auf wenige Nanometer genau. Die Mikrostrukturen können zwischen 100 nm und 100µm klein sein. Sie lassen sich periodisch anordnen oder stochastisch mit parabolischen, binären oder prismatischen Strukturprofilen.

Bei der Interferenz-Lithographie werden ultraviolette Laserstrahlen geteilt, aufgeweitet und überlagert. Dort wo sich die Strahlen überlagern, entsteht ein Helldunkel-Muster, das Interferogramm. Mit diesem wird der UV-empfindliche Lack, Photoresist, beschichtet. Im anschließenden Entwicklungsbad wird der Photoresist in Abhängigkeit von der Beleuchtung abgetragen. So entsteht ein Oberflächenrelief. »Mit dieser Technik können wir Flächen mit einer Größe bis zu 1,2 x 1,2 m2 homogen mikro- oder nanostrukturieren«, erläutert Dr. Benedikt Bläsi vom ISE die Möglichkeiten des Verfahrens. Die Urform wird galvanisch in Nickel abgeformt. Die Nickel-Kopien dienen als Prägewerkzeuge für Kunststoffe oder Sol-Gelschichten. Die vom ISE mikrostrukturierten Oberflächen können nicht nur in Display eingesetzt werden. In Kunst- oder Tageslichtelementen lenken sie Licht in die gewünschte Richtung und in Photodetektoren und Solarzellen helfen sie, das Licht einzufangen.

Auf der Optatec stellt das Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF das »Center for Advanced Micro- and Nano-Optics (CMN-Optics)« vor, das seinen Kunden die elektronenlithographische Strukturierung und die Übertragung von mikro- und nano-optischen Strukturen in das Substrat mittels Trockenätzen bietet. Herzstück der Einrichtung ist die Elektronenstrahllithografie-Anlage SB 350-OS. Damit lassen sich Gitter mit Gitterperioden von 500 nm auf Substratgrößen bis zu 300 mm herstellen.

Die Fertigung großflächig mikrostrukturierter Oberflächen ist nur ein Thema auf dem Fraunhofer-Gemeinschaftsstand in Halle 3 (D62 und D64). Unter dem Motto »Optische Technologien – vom Design zum System« stellen die Fraunhofer-Institute für Angewandte Optik und Feinmechanik IOF, für Photonische Mikrosysteme IPMS sowie das Fraunhofer IPT und das Fraunhofer ISE aktuelle Forschungsergebnisse vor. Zu sehen sind neue optische Beschichtungen, Mikrosysteme, Fertigungstechnologien, optisch funktionale Beschichtungen, Mikrooptische Komponenten sowie Methoden zur Optik-Charakterisierung.

Media Contact

Christian Wenzel Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer