Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aktiv gegen Schwingungen

23.03.2005


Bauteilverkleidungen von laufenden Maschinen und Fahrzeugen schwingen störend, in der Fertigung vibrieren Werkzeuge: Technischer Fortschritt, Leichtbau, Vibrationen und auch Lärm gehören eng zusammen. Abhilfe versprechen adaptronische, aktive Bauteile: Sie können dafür sorgen, dass Maschinen- oder Fahrzeugvibrationen – und damit auch der Lärm – geringer werden. Auf der Hannover Messe (11. – 15. April in Hannover) zeigen Forscher am Fraunhofer-Stand E30 in Halle 2 neueste adaptronische Komponenten für Automobil- und Werkzeugbau.


Haltestelle Busbahnhof. Der Fahrer liest gemütlich seine Morgenzeitung. Nach einem Blick auf die Uhr startet er den Motor. Zu dem monotonen Brummen des Motors entstehen starke Vibrationen. Vor allem die Seitenverkleidungen schwingen und dröhnen laut. "Das Beispiel Bus verdeutlicht eindrucksvoll, wie eng Schwingungen und Lärm miteinander verbunden sind", erklärt Dr.-Ing. Tobias Melz vom Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF in Darmstadt. Der Forscher ist fest davon überzeugt, dass schon bald Produkte des Automobil- und Werkzeugmaschinenbaus mittels Adaptronik optimiert werden. Im Projekt FASPAS (Funktionsverdichtete adaptive Strukturen durch Kombination von Piezotechnik und Softwaretechnologie autonomer Systeme) erarbeiten derzeit Wissenschaftler aus fünf Fraunhofer-Instituten Lösungen aus einer Hand für adaptronische Werkzeuge und Fahrzeugbauteile. Dabei decken sie das gesamte Spektrum von der Materialwissenschaft bis zur Systemzuverlässigkeit ab. Auf der Hannover Messe stellen die FASPAS-Wissenschaftler neben einem adaptiven multiaxialen Interface, das zunächst für den Kfz-Einsatz entwickelt wird, auch eine adaptive torsions- und biegesteife Strebe und eine Gewindelagerung für den Einsatz in Werkzeugmaschinen vor.

Intelligente adaptronische Bauteile erkennen Schwingungen und arbeiten ihnen kontrolliert entgegen, etwa durch eine Gegenschwingung oder eine aktive Dämpfung. Möglich wird dies dadurch, dass aktive Materialien wie piezoelektrische oder magnetostriktive Werkstoffe in die Bauteile integriert werden. Diese besitzen sensorische Eigenschaften und melden Schwingung an eine Rechnereinheit, dem Regler. Nachdem die Störung entdeckt und bewertet wurde, leitet er ein frequenz-, amplituden- und phasenangepasstes Signal an das aktive Material, das zugleich aktorische Eigenschaften besitzt. Das Aktorsignal wirkt in der Struktur der Störung gezielt entgegen und verhindert, dass die Störung sich weiter ausbreitet. Das aktive System bewirkt eine Bedämpfung oder Entkopplung der Quelle bzw. das Auslöschen der Vibrationen. An einer Stimmgabel lässt sich die Funktionsweise gut erklären: Schlägt man eine Stimmgabel an, wird eine Schwingung erzeugt. Beklebt man die Stimmgabel mit aktiven Materialien, so ermittelt der Regler den Schwingungen entgegenwirkendes Signal, das aktive System reagiert beim Anschlagen sofort mit einer Gegenschwingung, die Stimmgabel verstummt. Nach diesem Prinzip lassen sich eine Vielzahl von technischen Systemen optimieren. Die Forscher erwarten, dass die Adaptronik neben der Automobiltechnik und dem Werkzeugmaschinenbau in viele Branchen – Optik, Schiffbau, Anlagenbau, Luft- und Raumfahrt, Verteidigung – einziehen wird.


In FASPAS sind neben dem LBF das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU, das Fraunhofer-Institut für Autonome intelligente Systeme AIS, das Fraunhofer-Institut für Keramische Technologien und Sinterwerkstoffe IKTS und das Fraunhofer-Institut für Silicatforschung ISC beteiligt. Die FASPAS-Wissenschaftler entwickeln Prototypen und Demonstratoren für den Praxistest. So werden in einem Teststand störende Schwingungen erzeugt, die sich über die Federbeine auf die Fahrzeugkarosserie verteilen – ähnlich wie bei der Fahrt über Bodenwellen, Einwirkung von Fahrbahnrauhigkeiten und Motorvibrationen. Ein Wasserglas oben auf der Vorrichtung zeigt die sich in der Karosserie ausbreitenden Vibrationen an. Wird das aktive Interface zugeschaltet, bleibt der Wasserspiegel glatt. Damit wirken sich Störungen, die über das Federbein geleitet werden, nicht mehr negativ auf Lenkkomfort aus. Das Fahrzeug fährt ruhiger.

Ein weiteres Exponat ist eine aktive Strebe der Experimentalplattform 3POD. "Die Strebe beinhaltet Sensoren und Aktoren und reduziert Torsions- und Biegeschwingungen. So werden gleichzeitig Steifigkeits- und Leichtbaueigenschaften verbessert", erklärt Melz. "Durch den Einsatz aktiver Komponenten werden deutlich bessere Fertigungsqualitäten in Werkzeugmaschinen erreicht werden."

Dr.Ing. Tobias Melz | Fraunhofer-Institut
Weitere Informationen:
http://www.lbf.fraunhofer.de

Weitere Berichte zu: Bauteil Luft- und Raumfahrt Schwingung Stimmgabel Werkzeugmaschine

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Biophotonische Innovationen auf der LASER World of PHOTONICS 2017
26.06.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten
26.06.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie