Vibrationsarmer Drucklufthammer wird ab 2005 produziert

Dr. Holger Unger (r.) und Dipl. Ing. Udo Kreißig bei Einstellarbeiten an einem Versuchsaufbau zur Vibrationsmessung an einem Drucklufthammer. Foto: TU Chemnitz/Uwe Meinhold

TU Chemnitz und DRUGEMA GmbH Wittgensdorf testen ergonomischen Presslufthammer in sächsischen Gießereien – Überarbeitetes Forschungsmuster wird erstmals auf der INTEC präsentiert

Wissenschaftler des Institutes für Betriebswissenschaften und Fabriksysteme der Technischen Universität Chemnitz zeigen auf der 7. Industrie-Fachmesse INTEC in Chemnitz vom 3. bis 6. März 2004 ein Verfahren zur Breitbandvibrationsdämpfung von Drucklufthämmern. Das überarbeitete Forschungsmuster eines vibrationsarmen Presslufthammers, den die DRUGEMA GmbH in Wittgensdorf gemeinsam mit Forschern um Prof. Dr. Hartmut Enderlein entwickelte und nun in sächsischen Gießereien testet, wird erstmals auf der INTEC auf dem Gemeinschaftsstand „Forschungsland Sachsen“ in Halle 1 der Messe Chemnitz (Stand A.6) präsentiert. Bereits im vergangenen Jahr stieß der erste Prototyp des neuen Presslufthammers auf der Hannover Messe auf großes Interesse der Industrie.

Zum Hintergrund: Etwa 1,47 Millionen Drucklufthämmer werden heute in fast allen Industriebereichen Deutschlands betrieben. Sie alle haben eins gemein – sie vibrieren. Und das spürt man meist schmerzhaft in Händen und Armen. Bei der Konstruktion von Drucklufthämmern wurde bisher vorrangig auf niedrige Material- und Produktionskosten und auf verkaufförderndes Design geachtet. Gesundheitsaspekte bleiben dabei oft auf der Strecke.

In einem gemeinsamen Forschungsprojekt entwickeln die Forscher der Professur Arbeitswissenschaft der TU Chemnitz und der DRUGEMA GmbH Wittgensdorf (bei Chemnitz) Pneumatikhämmer, die kaum noch vibrieren und den ergonomischen Gestaltungsrichtlinien entsprechen. Die Vibrationsbeschleunigung am Hammergriff wird dabei von derzeit 8 bis 10 m/s² auf etwa ein Drittel gesenkt. Laut der neuen DIN EN 5349-1 dürfen nur solche Hämmer acht Stunden hintereinander von einer Person benutzt werden, die Vibrationsbeschleunigungen kleiner ist als 3 m/s² verursachen.

Handelsübliche Pneumatikhämmer der Klasse um 6 Kilogramm wurden bereits an der TU Chemnitz monatelang getestet und hinsichtlich ihrer Wirkung auf das Hand-Armsystem bewertet. Anpresskraft, Dämpfungsverhalten, mechanische Impedanz des Hand-Arm-Systems des Bedieners sowie der Wirkwinkel wurden bei allen Versuchen konstant gehalten. Die Chemnitzer Forscher wollen aus diesen Erfahrungen künftig ein Verfahren zur vergleichenden Bewertung von Drucklufthämmern bzw. der Schädigungen durch die Arbeit mit Pneumatikwerkzeugen entwickeln. Bereits jetzt zeichnet sich ab, dass ein neuer Drucklufthammer – made in Sachsen – dank seiner ergonomischen Gestaltung die DIN-Grenzwerte unterschreiten wird.

Die Aufnahme der Produktion der neuen Presslufthämmer bei der DRUGEMA GmbH Wittgensdorf ist Anfang 2005 vorgesehen. Die Planung der dafür nötigen Anlage wird derzeit von der Professur Arbeitswissenschaft der TU Chemnitz realisiert.

Kontakt: TU Chemnitz, Professur Arbeitswissenschaft, Dipl.- Ing. Udo Kreißig, Telefon (03 71) 5 31 – 53 15, E-Mail udo.kreissig@mb.tu-chemnitz.de

Media Contact

Dipl.-Ing. Mario Steinebach idw

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer