Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

BIOTECHNICA 2003: Chaos in der Ordnung

07.10.2003


Mit IMM-Computersimulationen werden die eigenen Mikromischer für vielfältige Applikationen optimiert


Neue Version des Raupenmikromischers CPMM-V2: Geeignet besonders für das Mischen zähflüssiger Stoffe. Denkbar als Komponente für biochem. Reaktionen, f.d. Herstellung von Blutersatzstoffen oder komplexe Aufgaben in Lab-on-Chip Systemen.


Hochsymmetrische Multilamellen-Anordnung in der neuen Version des Raupenmikromischers CPMM-V2. Die blaugefärbten und transparenten Lamellen sind als parallel fließende Ströme einer Glycerin/Wasser-Lösung sichtbar.



Trinken Sie gerne Kaffee? Ohne es wahrscheinlich zu wissen, nutzen Sie "chaotisches Mischen" jeden Morgen, wenn Sie die Milch in den Kaffee einrühren



Das Prinzip der hohen Mischleistung in der Kaffeetasse beruht auf einer vielfach nahezu unkontrolliert anwachsenden Vergrößerung der Mischflächen zwischen Milch und Kaffee. Von mikroverfahrenstechnischen Apparaten erwartet man eine vergleichbar hohe Mischleistung. Die hochgeordneten Strömungen in Mikromischern vermischen die Komponenten aber oft vergleichsweise langsam. Daher haben die Ingenieure des IMM nun "Chaos in die Ordnung gebracht". Mit speziellen Simulationsprogrammen gelingt es, die hochgeordneten Strömungen zu beschreiben. Auf diesen Ergebnissen aufbauend, konnte die Mischergeometrie der IMM-Raupenmischer im Hinblick auf eine hohe Mischleistung optimiert werden.

In den neuen IMM-Raupenmikromischern wird mit bisher nicht gekannter Perfektion ein sauberes Strömungsprofil erzeugt (eine so genannte hochsymmetrische Multilamellen-Anordnung).

Obwohl die Strömung in den IMM-Raupenmikromischern hochgeordnet ist, zeigen Berechnungen, dass die Mischfläche dennoch schnell (exponentiell) und quasi-chaotisch anwächst - wie bei der Vermischung von Milch mit Kaffee in der Tasse. Damit ist Chaos in der Ordnung, aber im Gegensatz zur Kaffetasse treten im IMM-Raupenmischer keine Turbulenzen auf.

Der neue Raupenmikromischer gliedert sich in eine Produktfamilie ein, die zunehmend für die industrielle Prozesstechnik eingesetzt wird. Anders als seine Vorgängermodelle eignet er sich besonders für das Mischen zähflüssiger (hochviskoser) Stoffe. Er ist damit als Komponente für biochemische Reaktionen, die Herstellung von Blutersatzstoffen oder Lab-on-Chip-Systeme denkbar.

Die besondere Mischleistung verdankt der neue Raupenmikromischer seiner inneren Struktur, die einer charakteristischen Geometrie folgt. Spezielle Split-Recombine-Stufen auf der Kanaloberfläche bewirken ein wiederholtes Trennen und Zusammenführen zweier Flüssigkeiten. Nach jeder Stufe verdoppelt sich die Anzahl der parallel fließenden Ströme (Fluidlamellen). Der neue Mischer ermöglicht - bei einem Kanalquerschnitt von 2 x 2 mm2 - hohe Durchsätze von bis zu 300 l/h bei einem Druckverlust von bis zu 7 bar.


Besuchen Sie uns auf der BIOTECHNICA 2003
vom 07.10.-09.10.2003.

* IVAM Gemeinschaftsstand Halle 2, Stand A36
* VDI/VDE-Technologiezentrum Halle 3, Stand G03


Dr. Stefan Kurze | idw
Weitere Informationen:
http://imm.mediadialog24.de/v0/vvseitend/vvpresse/presse_detail.php?id=165&quelle=aktuell

Weitere Berichte zu: BIOTECHNICA IMM-Raupenmikromischern

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht »Lasertechnik Live« auf dem International Laser Technology Congress AKL’18 in Aachen
23.02.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Empa zeigt «Tankstelle der Zukunft»
23.02.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics